The Past, Present and Future of Software Architecture

Eoin Woods
UBS Investment Bank

eoin@artechra.com
www.eoinwoods.info
I’m a working software architect

Always worked as a software engineer
- 8 years of products, 7 of applications

Recently moved to end-user company
- Lead a central architecture group

Co-author of software architecture book
- With Nick Rozanski, Addison-Wesley, 2005

Participant in IFIP 2.10 WG
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
What Is Software Architecture

The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible qualities of those elements, and the relationships among them.

- Bass, Clements, Kazman (SEI)
What is Software Architecture

- The set of design decisions which, if made incorrectly, will cause your project to be cancelled
 - Eoin Woods (heads the SEI definitions list)

The SEI definitions list:

www.sei.cmu.edu/architecture/definitions.html
Just Design, Surely?

- All architecture is design, not all design is architecture [Paul Clements]
- Not all design decisions are equal
 - Some have “architectural significance”
- Architectural design is outward looking
 - Focus on stakeholders, not technology
- Architecture more fluid than design
 - Context, scope, success criteria all unclear
The Essence

- Software architecture is concerned with:
 - *Stakeholders*
 - System-Level *Structures*
 - System *qualities*

- Software architecture involves:
 - *Understanding* domains, problems and solutions
 - *Making* design *decisions* & tradeoffs
 - *Delivering* working systems
Architecture in Context

The crucial bridge between requirements and design
This interplay is core to the architectural process.
The Role of the Architect

- Central technical communicator
- Key decision maker
- Responsible for delivery
Architect as Communicator
Why Architecture is Important

- Stakeholder focus
- Ensuring that the right system is built
- System-wide (or cross-system) consistency
Types of IT Architect

- **Software architect**
 - Focus of this talk
 - Responsible for a system’s structures

- **Enterprise architect**
 - Responsible for cross-system structures

- **Infrastructure architect**
 - Responsible for technology-specific structures

- **Operations architect**
 - Responsible for operational structures
Types of IT Architect

- Enterprise Architects
 - Software Architect
 - Infrastructure Architect
- Software Architects
- Infrastructure Architects
- Operations Architects
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Where Did it Come From?

- Ideas from David Parnas (1985)
 - also Zachman Framework (1987)
- Perry and Wolf paper (1992)
- Began largely as an academic interest
- Enthusiastically transferred into industry
 - little interchange between the two since!
- Mirrors the rise in importance and status of the technical IT professional
Some Milestones (i)

- 1995:
 - IEEE Software special issue on Software Architecture
 - Philippe Kruchten’s “4+1” viewpoint set published
- 1996:
 - Shaw and Garlan’s book “Software Architecture: Perspectives on an Emerging Discipline”
- 1998:
Some Milestones (ii)

- 2000:
 - Views and Viewpoints standardised via IEEE-1471
 - SEI’s “ATAM” analysis method published
 - RUP becomes “architecture centric”
 - J2EE 1.0 specification released

- 2001:
 - WICSA conference series starts

- 2002:
 - .NET 1.0 released
Some Milestones (iii)

- **2003:**
 - Bass, Clements and Kazman, 2nd Edition
 - Martin Fowler admits software architecture exists!

- **2005:**
 - IASA is founded and starts growing
 - New “Perspectives” concept identified
 - Nick Rozanski and Eoin Woods
 - Part of a new practitioner-oriented book
 - WICSA 5 runs in Pittsburgh
 - 10th anniversary of the IEEE Software issue
 - Significant practitioner focus and attendance
As an Aside – My Parallels

<table>
<thead>
<tr>
<th>Year</th>
<th>Me</th>
<th>The Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Trainee s/w engineer</td>
<td>Little s/w architecture discussion</td>
</tr>
<tr>
<td>1993</td>
<td>Trainee s/w architect</td>
<td>Perry and Wolf paper (92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEEE Software issue & “4+1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shaw and Garlan book (96)</td>
</tr>
<tr>
<td>2000-02</td>
<td>Systems architect role</td>
<td>Book explosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEEE 1471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2EE and .NET</td>
</tr>
<tr>
<td>2005</td>
<td>My book</td>
<td>WICSA 5 runs</td>
</tr>
<tr>
<td></td>
<td>Current role</td>
<td>IASA founded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fowler’s P of EAA (94)</td>
</tr>
</tbody>
</table>
The Present

- The language of SWA is widely used
 - Even if rarely defined or understood
- Reasonably large set of (basic) books
- Organisations & certification emerging
 - IASA, Microsoft
- Organisations are seeing value
 - Supply: IBM, Microsoft, Evolution-Detica,…
 - Demand: Hartford Financial, UBS, BP, …
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Architecture Fundamentals

- Stakeholders
 - Who cares what we build?
 - Why do they care?
- System structures
 - What do we build?
- System qualities
 - Why do we build it *that* way?
System-Level Structures

- The traditional deliverable of the software architect
- Note that there are many structures
 - Functional, Deployment, Information, …
- Represented as a set of views
 - Separate concerns
 - Communicate effectively
 - Organise deliverables and activities
Stakeholders

- Those who care if the system gets built
 - Can be a positive or negative interest
 - Includes people, groups and entities

- The reason we build systems
 - Systems are built for stakeholders
 - Design decisions must reflect their needs
 - A wide community often increases the chances of success
Stakeholders

- **Acquirers** pay for the system
- **Assessors** check for compliance
- **Communicators** create documents and training
- **Developers** create it
- **Maintainers** evolve/fix it
- **Suppliers** provide pieces
- **Support Staff** help people to use the system
- **System Admins**, keep it running
- **Testers** verify that it works
- **Users** use the system directly
Stakeholders

- Attributes of a good stakeholder include:
 - **Informed**, to allow them to make good decisions
 - **Committed**, to the process and willing to make themselves available in a constructive manner
 - **Authorised**, to make decisions
 - **Representative**, of their stakeholder group so that they present its views validly
System Qualities

- Non-functional characteristics ("-illities")
 - Performance, Security, Availability, …
- Often crucial to stakeholders
 - Slow functions don’t get used
 - Unavailable systems stop the business
 - Security problems cause headlines
- Yet often an after-thought
System Qualities

- Achieving system qualities is a key task
 - Understanding real stakeholder needs
 - Understanding what is possible
 - Making the key trade-offs to allow delivery
 - Avoiding expensive “retro-fit”
Architect’s Responsibilities

- Understand requirements
 - Identify architectural impact
- Lead development
 - Help, don’t hinder
- Analyse architectures
- Make design decisions and tradeoffs
- Communicate
- Ensure delivery!
Typical Architect’s Activities

- Create models (UML, ADL, B+L, …)
- Build skeleton systems
- Write PoCs and prototypes
- Write documents
- Give presentations
- Undertake “rescue missions”
Attributes of a Good Architect

- Technology knowledge
- Design ability
- Communication skills
- Pragmatism
- Political sensitivity
- Tact

... and a good sense of humour doesn’t hurt!
Architectural Significance

- A concern, problem, or system element is architecturally significant if it has a wide impact on the structure of the system, or on its important quality properties such as performance, scalability, security, reliability or evolvability
 - Philippe Kruchten

- Externally visible
- Has a real affect on stakeholder utility
- Difficult to change later
- Affects many parts of the system
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Simple Example

- A statistics management system
 - Data bulk-loaded into the database
 - Derived measures calculated automatically
 - Statisticians view and report on the data
 - Deductions recorded and reviewed manually
Simple Architecture

- Described through 5 views
 - Functional
 - Information
 - Concurrency
 - Development
 - Deployment

(Operational view omitted)
Concurrency View
Development View

Domain
- StatDate Library
- Java Numerical Toolkit

Utility
- Apache Axis
- Hibernate 2.1

Platform
- Java 1.4 Library
- Oracle JDBC Driver 9.0
- Servlet 2.2 API
The architecture we’ve described is credible.

What would happen if the system needed to protect the system’s information?

Justice community system for criminal intelligence.
Considering Security

- Sensitive Resources
 - The data in the database

- Security Threats
 - Operators stealing backups
 - Administrators querying data, seeing names
 - Bribing investigating officers
 - Internal attack on the database via network
Considering Security

- Security Countermeasures
 - Backups: encrypt data in the database
 - How about performance?
 - Does this make availability (DR) harder?
 - Seeing names: use codes instead of names, protect codes at higher security level
 - More development complexity
 - Possible performance impact
Considering Security

- Security Countermeasures
 - Network Attacks: firewalls, IDS
 - More cost
 - More deployment / administration complexity
 - Operational impact if IDS trips
 - Bribery: add audit trail for data access
 - Possible performance impact
 - More complexity
 - Protecting / using the audit trail
Considering Security

- Information View Impact

Isolate names

- Deduction
- StatsSet
- Variable
- Observation
- Identifier Code
- DerivedMeasure
Considering Security

- Development View Impact

Add audit when accessing data
Considering Security

- Deployment View Impact

Added network model making network security clear
Considering Security

- **Other Impact**
 - Need IDS added to Development view
 - Need to capture impact on Operational view
 - Need to consider impact on availability
 - Need to re-work performance models to allow for database encryption, audit, …

- Note the need to change many views
- This is “architecturally significant”
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
The Future (i)

- Career track recognition
 - Architect vs. developer, tester or PM
 - Possibly certification (e.g. IASA)
- Better description languages & tools
 - Executable and queryable architectures
 - Architecture in the running system
- Architect-specific tool support
 - Lattix and Sotograph are early examples
The Future (ii)

- Fundamental agreed definitions
 - Necessary or even desirable?
- Teaching
 - MSc in software architecture perhaps?
- Further styles codified as technologies
 - Grid, tuple-space, P2P, …
Summary (i)

- Software architecture is still young
 - Really a product of 1995 – 2005
- Mainstream since about 2002
- Good core of knowledge emerging
 - Approaches and techniques
- Some agreement on fundamentals
 - Stakeholders, structures, qualities
 - Understanding, designing, trading-off, delivering
Summary (ii)

- Finally research & practice meeting
 - WICS A 5, IASA, Microsoft, …
- The future is architecture in the systems
 - Too much is lost today
To Learn More

Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info
Comments and Questions?
Abstract

The activity of "software architecture" has quite recently emerged, alongside the venerable quartet of traditional software development activities, specification, design, code and test. Why has this new activity emerged and what is it? Is it not just high level design? In this talk, Eoin Woods, a participant in the IFIP International Working Group 2.10 on Software Architecture, will trace the emergence of this new activity, explain what makes software architecture unique, and provide some thoughts on where this new specialisation is headed.