The Past, Present and Future of Software Architecture

Eoin Woods
UBS Investment Bank

Eoin.Woods@ubs.com
www.eoinwoods.info

About me

- I’m a working software architect
 - Enterprise and software architecture
- Always worked as a software engineer
 - 8 years of products, 7 of applications
- Recently moved to end-user company
 - Stream architect in ETD area
 - Major re-engineering effort
- Co-author of software architecture book
 - With Nick Rozanski, Addison-Wesley, 2005
- Participant in IFIP 2.10 WG
Topics

- Introducing Software Architecture
- The Past
- The Present
- The Future

What Is Software Architecture

The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible qualities of those elements, and the relationships among them

- Bass, Clements, Kazman (SEI)
 Software Architecture in Practice
What is Software Architecture

- The set of design decisions which, if made incorrectly, will cause your project to be cancelled
 - Eoin Woods (heads the SEI definitions list!)

The SEI definitions list:
www.sei.cmu.edu/architecture/definitions.html

Just Design, Surely?

- All architecture is design, not all design is architecture [Paul Clements]
- Not all design decisions are equal
 - Some have "architectural significance"
- Architectural design is outward looking
 - Focus on stakeholder needs, not pure technology
- Architecture more fluid than design
 - Context, scope, success criteria all unclear
Architecturally Significant

- concern, problem, system element; having
- wide impact on structure of the system; or
- wide impact on an important quality property
 (performance, availability, …)

(Philippe Kruchten, Intro to RUP, 2nd Edition, 2000)

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Global</th>
<th>Intentional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Local</td>
<td>Intentional</td>
</tr>
<tr>
<td>Implementation</td>
<td>Local</td>
<td>Extensional</td>
</tr>
</tbody>
</table>

*“Architecture, Design, Implementation”,
Amnon Eden And Rick Kazman, ICSE 2003*

Is It Really “Architecture”?

<table>
<thead>
<tr>
<th></th>
<th>Civil Architect</th>
<th>Software Architect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Arts based</td>
<td>Engineering based</td>
</tr>
<tr>
<td>Focus</td>
<td>Aesthetics, usability</td>
<td>How it works</td>
</tr>
<tr>
<td>Key Responsibility</td>
<td>Vision, coordination</td>
<td>Delivery of solution</td>
</tr>
<tr>
<td>Key Talent</td>
<td>Feel for client need</td>
<td>Technical design</td>
</tr>
</tbody>
</table>

- But some similarities, both:
 - need a “big picture” focus and awareness
 - act as a bridge from customer to builder
- Software architect = civil architect + structural engineer?
- Don’t push the analogies too far!

The Essence

- Software architecture is concerned with:
 - Stakeholders
 - System-Level Structures
 - System Qualities

- Software architecture involves:
 - Understanding domains, problems and solutions
 - Making design decisions & tradeoffs
 - Delivering working systems
Architecture in Context

The crucial bridge between requirements and design
“Three Peaks” model – after Bashar Nuseibeh

Why Architecture is Important

- Stakeholder focus
 - who cares and why
 - more than just users and sponsors
- Ensuring that the right system is built
 - critical functions, crucial qualities
- System-wide (or cross-system) consistency
 - what should be constant, what should vary
- Early identification of risk
 - what is going to go wrong and how to avoid it
Types of IT Architect

Enterprise Architects

- Software Architect
- Infrastructure Architect

Operations Architects

- Software Architect
- Infrastructure Architect

Single System Focus
Technology Specific Focus
Production Environment

Cross-System Decisions

Topics

- Introducing Software Architecture
- The Past
- The Present
- The Future
Where Did it Come From?

- Dates from mid-1980
 - roots as far back as late 1960s
 - mainstream interest from mid-1990s
- Began largely as an academic interest
 - from studying how systems were built
- Enthusiastically transferred into industry
 - little interchange between the two since!
- Mirrors the rise in importance and status of the technical IT professional

The Past - People

- 1985 – David Parnas and modules
 - 1987 – Zachman Framework
- 1992 – Dwayne Perry and Alex Wolf
- 1994 - Witt/Baker/Merritt book (IBM FSD)
- 1995 – Philippe Kruchten and 4+1
- 1996 – Shaw and Garlan’s book
- 2000 – Team produce IEEE 1471
- 2003 – Martin Fowler admits it exists!
The Past - Process

- Constant arguments over “what is architecture”
- No shared understanding of what to do & when
- Pioneering architects ploughed ahead
 - Brooks (of course) – S/360
 - Witt/Baker/Merritt – IBM FSD
 - Kruchten - CATS
 - Cutler – Windows NT
 - Booch – methods and analysis
 - Shaw/Garlan/Bass/Kazman/Clements/Obink/Ran/Muller/… – research and study

The Past - Technology

- Some hopeful technologies never took hold
 - ADLs
- Formalisms have been and gone
 - numerous architectural calculi
- Architects largely imposed architecture on resisting technology
 - components of COBOL!
- Little or no architectural thinking in many product lifecycles
 - ad-hoc structure and extension
 - little support for architectural practice
The Past - Politics

- Constantly answering the question “what is a software architect and why do I need one?”
- Early architects often had no recognition of role
 - constant explanation and education
- Little understanding of the benefits in most organisations
 - and conversely, limitations

Topics

- Introducing Software Architecture
- The Past
 - The Present
- The Future
The Present - People

- Today architects have some industry support
 - Organisations like IASA, conferences like WICSA
- Organisations are seeing value
 - IBM, Microsoft, Hartford Financial, UBS, BP, …
- Some technology independent training
 - SEI, Open Group, various degree modules
- “Architect” appears in career frameworks
- But no clear route to architect jobs
 - Software developers, BAs, PMs, hybrid paths
 - Reflects confusion over nature of the role

The Present - Process

- Small number of reliable techniques
 - Viewpoints & views, ATAM, perspectives
- Focus on simple techniques to organise
 - Boxes and lines in PPT do tend to dominate!
 - Little real analysis of descriptions is possible
- Overall process is quite ad-hoc
- Little or no domain focus in approaches
- Reasonably large set of (basic) books
- Some standard terminology exists (e.g. 1471)
 - but not widely used
ATAM

Phase 1
- Understand Business Drivers
- Understand the Architecture
- Identify Architectural Approaches
- Generate Quality Attribute Trees
- Analyse Approaches

Phase 2
- Brainstorm / Prioritise Scenarios
- Analyse Approaches
- Present Results

Stakeholder-centric activities

Architect-centric activities

Architecture Tradeoff Analysis Method
http://www.sei.cmu.edu/ata

Viewpoints

- Functional Viewpoint
- Information Viewpoint
- Concurrency Viewpoint
- Development Viewpoint
- Deployment Viewpoint
- Operational Viewpoint

[Rozanski & Woods, 2005]
Viewpoints Example

- A statistics management system
 - Data bulk-loaded into the database
 - Derived measures calculated automatically
 - Statisticians view and report on the data
 - Deductions recorded and reviewed manually

Viewpoints Example

- Described through 5 views
 - Functional
 - Information
 - Concurrency
 - Development
 - Deployment
 - *(Operational view omitted)*
Concurrency View

Development View

Domain
- StatDate Library
- Java Numerical Toolkit

Utility
- Apache Axis
- Hibernate 2.1

Platform
- Java 1.4 Library
- Oracle JDBC Driver 9.0
- Servlet 2.2 API
Deployment View

Client PC
- Memory >= 500MB
- CPU >= 1.8GHz

Primary Server
- Model: DellSC430
- Memory: 8GB
- CPU: 2x 3GHz

- **Stats_Client**
- **Calculator**

Database Server
- Model: SunFire V440
- Memory: 16GB
- CPU: 2x 1.6GHz
- IO: FiberChannel

Disk Array
- Model: StorEdge 3510FC
- Capacity: 1000GB

Data Centre Resident
- **Primary Server**
- **Database Server**
- **Disk Array**

Viewpoints and Perspectives

- Security Perspective
- Accessibility Perspective
- Performance Perspective
- Location Perspective
- Availability Perspective
- Regulation Perspective
- Maintenance Perspective
- etc.

Stakeholders
- Architecture
- Development View
- Information View
- Operational View
- Deployment View
- Information View

Architecture
Perspectives Example: Security

- The architecture we’ve described is credible
- What would happen if the system needed to protect the system’s information?
 - Justice community system for criminal intelligence

Considering Security

- Sensitive Resources
 - The data in the database
- Security Threats
 - Operators stealing backups
 - Administrators querying data, seeing names
 - Bribing investigating officers
 - Internal attack on the database via network
Considering Security

- Security Countermeasures
 - Backups: encrypt data in the database
 - How about performance?
 - Does this make availability (DR) harder?
 - Seeing names: use codes instead of names, protect codes at higher security level
 - More development complexity
 - Possible performance impact

- Network Attacks: firewalls, IDS
 - More cost
 - More deployment / administration complexity
 - Operational impact if IDS trips

- Bribery: add audit trail for data access
 - Possible performance impact
 - More complexity
 - Protecting / using the audit trail
Considering Security

Information View Impact

- DerivedMeasure
 - Deduction
 - StatsSet
 - Variable

Isolate names

Identifier Code

Observation

Add audit when accessing data

Considering Security

Development View Impact

- Domain
 - Controlled StatAccess Library
 - StatDate Library
 - Java Numerical Toolkit

- Utility
 - Apache Axis
 - Hibernate 2.1
Considering Security

- Deployment View Impact
 - Added network model making network security clear

- Other Impact
 - Need IDS added to Development view
 - Need to capture impact on Operational view
 - Need to consider impact on availability
 - Need to re-work performance models to allow for database encryption, audit, …

- Note the need to change many views
- This is “architecturally significant”
The Present - Technology

- Today it’s a design time game
 - Most architecture lost as we move to code
 - Even with so called MDA – the “A” doesn’t survive

- Some styles codified in technologies
 - Grid, P2P, client/server, tuple space

- First-class connectors in some places
 - Messaging oriented systems, ESBs, …

- First tools for architects appearing
 - Lattix, Sotograph, Aspects, Troux’s Metix (for EA)

The Present - Politics

- Everyone’s an architect
 - 10 years technical experience => “architect”

- Language of software architecture widely used
 - Even if rarely defined or understood

- Products sold through architecture
 - .NET, J2EE, SOA, distributed caches
 - Leads to mass confusion about "architecture"

- Agile / architecture tension is fairly high

- Competing professional organisations
 - IASA, WWISA, GEAO, AEA, …
Topics
- Introducing Software Architecture
- The Past
- The Present
- The Future

The Future - People
- Better defined role
 - Architect vs. developer, technologist, tester or PM
 - Helps relationships with others
- Career track recognition
 - Agreement of key skills and responsibilities
 - Possibly certification (e.g. Microsoft, IASA, GEAO)
- One or more key professional bodies emerge
 - Probably IASA, perhaps others
- Education
 - MSc in software architecture perhaps?
The Future - Process

- Standardised practice
 - domain specific approaches
 - real time vs. transactional vs. data centric vs. …
- Different levels of architectural process in use
 - from “agile” to “SEI” (or “kennel” to “skyscraper”)
- Design decisions will become first class
 - move focus from *structure* to *rationale*
- Fundamental agreed definitions
 - need to decide if necessary or even desirable?

The Future - Technology

- Moving architecture to runtime
 - Views in the running system
- Better description languages & tools
 - Executable and queryable architecture description
- Architecture in the running system
 - ADLs / DSLs / Aspects
- Architect-specific tool support
 - Lattix and Sotograph are just early examples
 - Modelling and construction ripe for development
The Future - Politics

- Someone will win the hearts and minds
 - IASA?
- Selling to architects will get more intense and effective
- The agile / architecture tension will settle down
 - Both will realise where their strengths are
- More research / practice alignment?
 - WICSA6 and WICSA7 perhaps!
Topics

- Introducing Software Architecture
- The Past
- The Present
- The Future
- Summary

Summary (i)

- Software architecture is still young
 - really a product of 1995 – 2005
- Mainstream since about 2002
- Good core of knowledge emerging
 - approaches and techniques
- Some agreement on fundamentals
 - stakeholders, structures, qualities
 - understanding, designing, trading-off, delivering
- Much to do to raise level of sophistication
 - description, analysis, runtime representation
Summary (ii)

- Finally research & practice meeting
 - WICSA 5, IASA, Microsoft, …
- Better design time tools will come
 - describe and analyse architectures
 - create architectures using dedicated languages
 - beyond boxes and lines
- The future is architecture in the running system
 - too much is lost today
 - architecture description as an executable deliverable

To Learn More

Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info