
Eoin Woods
www.eoinwoods.info

Top Ten Software
Architecture Mistakes

Content

• Introduction

• Ten Mistakes and Some Solutions

• Recap & Conclusions

2 20091202 (c) Eoin Woods, 2009

3

Introduction for Me

• Software architect at Barclays Global Investors
• head of application architecture group for the firm
•  responsible for Apex, a new equities portfolio management system

• Software architect for ~10 years
• with some enterprise architecture for about 2 years

• Co-Author of “Software Systems Architecture ” book with Nick
Rozanski

• IASA and BCS Fellow, IET member, CEng

20091202 (c) Eoin Woods, 2009

4

Introduction for the Talk

• Based on an article written for IT Architect
•  itarchitect.co.uk
•  commissioned through IASA (www.iasahome.org)

• Ten mistakes that I’ve made and seen made
•  ten is an arbitrary number, but a good size to start with
• of course there are others, your top 10 may be different

• Most are simple but they happen again and again
•  solutions are also quite simple but have been effective
•  I’ve found that simplicity usually means effectiveness

20091202 (c) Eoin Woods, 2009

5

Content

• Introduction

• Ten Mistakes and Some Solutions

• Recap & Conclusions

20091202 (c) Eoin Woods, 2009

6

Mistake 1: Scoping Woes

• Scope creep is the enemy the delivery deadline
• expense systems that end up processing invoices!
• but too narrow a scope can be as bad as too broad

• Functional scope problems are well understood
•  “show me the money” – why is this important to you?
•  “missing bricks” – the boring pieces the rest need

• Non functional scope mistakes are more difficult
•  “available 24 x 7 x 365” … or Mon-Sat 0800-2000 ?
•  “Usability of the Mac” … or perhaps better than Access ?
•  “No authorisation needed” …. do anything after login ?

20091202 (c) Eoin Woods, 2009

7

Solution 1: Controlling Scope

• Focus ruthlessly on the problem being solved
• usually needs deep domain knowledge
• get help, ask for a range of independent opinions

• Always consider your system in the larger context
• does it solve a complete problem in your environment?

• If asked to gold plate challenge the RoI
•  “how will this feature increase your effectiveness?”

• If features are missing illustrate with scenarios
•  show why it won’t work without the missing pieces
• may need to trade off manual business process steps

20091202 (c) Eoin Woods, 2009

8

When Scopes Collide

What the
users really

need

Use
scenarios to

find this

Demand RoI
to try to

eliminate this

What the
users say
they want

20091202 (c) Eoin Woods, 2009

9

Mistake 2: Not Casting Your Net Widely

• Systems are built to meet stakeholder needs
• everything ultimately tied to a stakeholder who cares

• The difficulty is working out who is important
• Users
• Acquirers (budget holders)
• Support staff and systems administrators?

• Vendors?

• Include everyone whose cooperation is needed
•  IT Security?, IT Risk?, Compliance?
•  IT Operations?

• Consider positive and negative stakeholders

20091202 (c) Eoin Woods, 2009

10

Solution 2: Building a Stakeholder Group

• Need a stakeholder list as early as possible
• even if not formal, you need to understand it early

• Consider who is affected by the system
•  individuals and groups
• positive and negative

• Rank by influence and likelihood of disagreement
• who really cares one way or another

• how likely are they to create problems!

• Get to work on the (H:H) people immediately!
• use the ranking to prioritise communication
• earlier communication generally reduces problems

20091202 (c) Eoin Woods, 2009

11

Solution 2: Example Rankings

• Acquirer – sponsors the project
• probably medium or high interest but low risk (M:L)

• End Users – use whatever you build
• probably high interest, low risk if involved (H:L)

• Compliance – concerned about legal regulation
• probably medium interest, medium risk (M:M)

• IT Security – concerned about standards & risk
• probably medium interest, high risk (M:H)

• IT Infrastructure – concerned about running it
• probably high interest, medium risk (H:M)

20091202 (c) Eoin Woods, 2009

Stakeholder Groups

• Acquirers pay for the system

• Assessors check it for
compliance

• Communicators create
documents and training

• Developers create it

• Maintainers evolve and fix the
system

• Suppliers provide system
components

• Support Staff help people to
use the system

• System Administrators keep
it running

• Testers verify that it works

• Users have to use the system
directly

12 20091202 (c) Eoin Woods, 2009

13

Mistake 3: Focusing on Function

• End user cares what the system does
• but actually cares how it does it too
•  if slow or difficult to use or just unavailable … it won’t get used
• other groups even more so (e.g. supportability)

• Easy to forget everything apart from functionality
•  “when will I be able to do X?”

•  rarely ask “… and how fast will that be?”

• Good design makes functions “easy” to add
• although data is often another question …

• Qualities are often difficult to change later
• expensive to add security, availability, performance, …

20091202 (c) Eoin Woods, 2009

14

Solution 3: Consider Your Qualities

• Work through the standard list
• availability, compliance, evolvability, maintainability, performance,

reliability, scalability, security, supportability

• Pick your top 3 or 4
• you can’t deal with them all at once
•  select by product of importance and difficulty

• Identify requirements & technical solutions
• perspectives can help in new areas

• Identify the conflicts between them and trade-off
•  this is the hard (but interesting) part
•  remember there usually isn’t one right answer

20091202 (c) Eoin Woods, 2009

15

Solution 3: Example Trade-off

• Your system requirements state that it has to be “secure”
•  sensitive operations and/or data

• You consider threats and risks and decide on
•  client PKI certificates and two factor authentication
•  role-based access control w/ information partitioning
• prevent leakage (no USB keys, no copy & paste, …)

• Result: a secure system that meets your written requirements
• but will anyone be prepared to use this system?
• how expensive will build, operation and support be?

• So what do you decide to trade-off?
•  there’s no “right” answer to this
• example may be fine for a military system, not for call centres

20091202 (c) Eoin Woods, 2009

16

Mistake 4: Boxes and Line Descriptions

• Communicating your architecture is crucial
•  if no one understands then the architecture won’t exist

• Difficult to represent architecture on paper
•  complicated, large, multi-faceted, subtle, ...

• Different people care about different things
• DBAs – database, data location, data usage, …
•  IT Infra – machines, connections, middleware, …

• One large description rarely works well
•  so consider views of your architecture

• A badly defined description never works well
•  so don’t use PowerPoint/Visio boxes and lines!

20091202 (c) Eoin Woods, 2009

17

Solution 4: Adding Precision to Description

• USE A WELL DEFINED NOTATION
•  if necessary use a very simple one
• otherwise everyone will read it their own way

• Using UML? Define conventions and stereotypes
•  so what exactly is a “component” then?

• Break your description down into views
• one view per type of structure

•  functional, concurrency, deployment, information, …
•  reduces confusion by separating concerns

• Be accurate, even when abstract
•  suppressing detail shouldn’t mean introducing errors!
•  imprecise descriptions are confusing (“but I thought …”)

20091202 (c) Eoin Woods, 2009

18

Solution 4: Example View Set

From “Software System Architecture”, Rozanski and Woods, 2005

20091202 (c) Eoin Woods, 2009

19

Solution 4: Example of Confusion

We probably understand this but it’s hard to be sure. What does all
of the notation mean? Are all the relationships there?

20091202 (c) Eoin Woods, 2009

Solution 4: Better Example

20

a functional view fragment

20091202 (c) Eoin Woods, 2009

21

Solution 4: Better Example

a deployment view fragment
20091202 (c) Eoin Woods, 2009

22

Mistake 5: Forgetting It Needs to be Built

• Everyone wants to do new and cool stuff
• COBOL/VSAM vs. Ruby on Rails? Any takers for COBOL?

• Most systems could be built in a variety of styles
•  file transfer or message based events or SOA?

• Using a range of technical options
•  single database vs. distributed database?
•  full app server vs. simple framework use?

• Every option has its own dependencies & risks
• Can your design be realised at acceptable risk and cost in your

environment?
• people, time, budget, experience, risk appetite - all have an impact

20091202 (c) Eoin Woods, 2009

23

Solution 5: Grounding Your Architecture

• Consider what it takes to build your architecture
• do you have the people who can do it?
• do you have the budget and time?
• do your acquirers have the risk tolerance?
•  can the organisation deal with it? (e.g. Infrastructure Group)

• Are the innovations beneficial enough to justify?
•  is the added performance really needed?
• or the flexibility likely to be used?
•  can the reduced time to market be capitalised upon?

• Could you achieve the same thing in other ways?
• using existing approaches in new/better/different ways?

• Have you considered the potential downsides?

20091202 (c) Eoin Woods, 2009

24

Solution 5: Example of Alternatives - SOA

SOA Benefit Alternative Approach

Loosely Coupled Messaging, ETL, common file formats,
REST, …

Cross Platform VM-based languages, XML, HTTP, even flat
files !

Reusable Components Interfaces, component models,
architectural style, …

Process Flexibility Traditional workflow, configurable systems
(e.g. via Spring)

Buzzword Compliant REST or Functional languages

this is not to say that SOA doesnÕt have value, but many of its asserted
benefits can be provided more simply

20091202 (c) Eoin Woods, 2009

25

Mistake 6: Lack of Platform Precision

• Modern systems rely on a stack of dependencies
• virtual machines, operating systems, middleware, containers, XML

libraries, database libraries, database systems, GUI toolkits, …

• A potential versioning nightmare

• Packaging dependencies with the application minimises version
problems

• but can’t package the OS, database, …

• Easy to be quite imprecise about dependencies
•  “Runs on Linux, WebLogic 10 and Oracle”
•  chances of this ending well are slight

• Real risks if dependencies aren’t understood

20091202 (c) Eoin Woods, 2009

26

Solution 6: Specifying Your Platform

• The easy solution: inventory your platform
•  standardise your environments
• write down exactly what you use
•  impose it on your support group (or self support)

• The better solution: use standard builds
• use the “approved” software “stack” in your organisation

•  stay current during development and test
•  less flexible & only works if there are pre-built stacks!

• The best solution: interoperability testing
• also the most expensive solution
• allows a range of platform options to be used
• probably only appropriate for products

These are ÒobviousÓ but people often donÕt actually do them!
20091202 (c) Eoin Woods, 2009

27

Mistake 7: Performance Assumptions

• Performance is a hard quality to guarantee
• and unfortunately nearly everyone is interested in it!
• often dependent on environmental factors and obscure technical

details (as well as your design of course)

• difficult and expensive to test thoroughly and reliably

• Easy and tempting to assume all will be well
•  test something small, multiply the answer!
•  this hardly ever works

• Performance needs to be tackled early
• estimation and modelling

•  testing in the small
•  testing in the large

20091202 (c) Eoin Woods, 2009

28

Solution 7: Assume Nothing!

• Performance is one example of a difficult quality
• plenty more: security, scalability, evolution, ….

• Assuming anything about qualities is a mistake
• all of them depend on a range of subtle factors

• The strategies to mitigate the risk:
• use the experience of experts
•  review assumptions and designs widely

•  test with prototypes and test beds
• model qualities to allow “pen and paper” analysis

• Practical testing is usually the most effective approach
• but expensive in $$ and time
• you still need to consider interaction of factors

20091202 (c) Eoin Woods, 2009

29

Solution 7: Dealing with Performance

from the R&W Ò performance perspectiveÓ - aims to provide a guide to
avoiding performance surprises late in the day

20091202 (c) Eoin Woods, 2009

30

Mistake 8: DIY Security

• Conceptually security isn’t that hard
• do I know you? can you do or see this?

• In reality security is very easy to get wrong
• vulnerability to analysis, replay or just guessing
• gaps in protection, covert channels for information
•  subtle inconsistencies leading to vulnerabilities

• Security technology is often complicated
•  “easier if I just build something – less risk”
• difficulties emerge in operation, breach or assessment

• Try to use standard solutions in standard ways
• otherwise get expert, experienced help

20091202 (c) Eoin Woods, 2009

31

Solution 8: Reuse Infrastructure

• Examples of this other than security abound!
• e.g. high performance, scalable servers aren’t easy either

• In general reusing infrastructure is safer
•  it’s been written already so you know what you get
•  it comes at a cost you can estimate
• you can test it to see if it works

•  it probably has a lot of the problems ironed out

• But as ever it’s a trade off to make
• generic products don’t solve your problem specifically
•  they can introduce a lot of complexity and unknowns
•  can introduce a lot of initial adoption cost too

20091202 (c) Eoin Woods, 2009

32

Solution 8: Reusing Infrastructure

• Using an authorisation package could be complex
•  cost, deployment complexity, integration complexity, runtime

dependencies, availability risks

• Authorisation just needs a (role, action, resource) table and
code to check it doesn’t it?

• but it also needs administration interfaces …
• and integration into your security processes …
• and auditing of all changes …
• and must be secure and tamper proof …
• and …

• Actually, maybe a package isn’t such a bad idea!
•  if it provides everything you need reliably of course

20091202 (c) Eoin Woods, 2009

33

Mistake 9: Lack of Disaster Recovery

• Early work on disaster recovery seems unnecessary
•  “No time to worry about things that may never happen”

• Unfortunately that’s rarely the case
•  internal requirements (risk to the business)
• external compliance (SOX, OCC, FSA, SEC, …)

• DR is expensive and complicated
•  cost of the DR environment and process

•  recovery to a DR environment never goes well initially
•  running regular realistic tests is the only way to check it

• Early work on DR design is the only way to get there
• making sure the system could be recovered
• getting the dependencies set up

20091202 (c) Eoin Woods, 2009

34

Solution 9: Practice, Practice, Practice

• Plan, Design, Build, Practice

• Starting planning for availability early
•  can HA mitigate some of the DR situations?
• budget for the time and money needed (no surprises)

• Put DR in the design and build work
•  review your designs for disaster recovery difficulties
• allow for the geographical distribution needed

•  consider how you’ll deal with data loss and latency

• Practice, practice, practice
•  run reasonably representative recovery exercises
•  start as soon as there is a system running

20091202 (c) Eoin Woods, 2009

35

Mistake 10: No Backout Plan

• We always hope that deployment will go well
• but we’ve all experienced situations when they don’t
• many factors causing failure are outside your control

• A backout plan deals with failed deployment
• detailed concrete steps for restoring the status quo

• Easy to ignore or skimp on a backout plan
• again, an unnecessary luxury you can ill afford time for

• Without one you risk total unavailability
•  “if you think education is expensive try ignorance”
•  rare to find an application where this is a good trade

20091202 (c) Eoin Woods, 2009

36

Solution 10: Know Where You Came From

• Reality means that upgrades go wrong
• unexpected environment, infra faults, system faults, …

• Failed upgrades mustn’t affect availability
• but often have to use the same hardware and databases

• Upgrades need reverse gear as well as forward
• At any point you need to be able to back out (or be clear you can’t

and have a contingency)

• For large systems this is often difficult
• parallel hardware or databases? and networking, … ?
• handling workload during long upgrade windows?
• dealing with multiple component versions concurrently

• no magic formula – it needs thought, ingenuity & diligence

20091202 (c) Eoin Woods, 2009

37

Content

• Introduction

• Ten Mistakes and Some Solutions

• Recap & Conclusions

20091202 (c) Eoin Woods, 2009

38

Recap

• Scoping Woes

• Not Casting Your (Stakeholder) Net Widely

• Focusing on Functions (Forgetting Qualities)

• Using Box and Line Descriptions

• Forgetting that it Needs to be Built

• Lack of Platform Precision

• Performance Assumptions

• DIY Security

• Lack of Disaster Recovery

• No Backout Plan

20091202 (c) Eoin Woods, 2009

39

Summary

• No one ever said software architecture was easy
• but there are mistakes that get made again and again
•  some have well known solutions, some don’t

• Just an awareness often helps
• many are related to maintaining a broad view
•  software architecture is more than module design

• Broad technical knowledge is valuable
• ability to deal across specialisations is key to the role

• Risk and return approach is key
• what makes the system more valuable?
• what is likely to cause it to fail?

20091202 (c) Eoin Woods, 2009

40

A Few More Solutions

 Software Systems Architecture
Working With Stakeholders Using
Viewpoints and Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info

Eoin Woods
contact@eoinwoods.info
www.eoinwoods.info

41

