
Getting a System to Production
... and keeping it there

1

Eoin Woods 
Endava

SATURN 2016

Who Am I?

Eoin Woods - CTO at Endava
2005 - 2014 in capital markets (UBS, BGI)
2000 - 2004 in product engineering & consultancy  
(Bull, Sybase, InterTrust, independent)

Author, editor, speaker, community-guy

2

Who are Endava?
Software Engineering & IT Services Firm

2800+ people
UK, US, Germany, Romania, Moldova, Serbia,
Macedonia

Agile and Digital Transformation
Consulting, Architecture, Development, Testing
Data and Analytics
Application Management, Infrastructure, DevOps

3

Content
Introducing Production Systems
What Goes Wrong in Production?
Solutions for Production Systems
Conclusions

4

Production Systems

5

What is a production system?

6

Any system 
being used 

for real work

Why is Productionisation Hard?
No one teaches you about production

who do you talk to?
what do they want?
what is the definition of “done” ?

Production is difficult for developers
hard to access, interrogate, debug, change, ...

7

A new cast of characters

8

Developers

Development

Users

A new cast of characters

8

Production

Users

Developers

Auditors
Operations

Acquirers

Infrastructure

Business 
Management

Production is constrained
Highly controlled

Content is all valuable

Change can be difficult

9

Production is unpredictable

10

Production is highly visible!

11

You don’t own production

12

What goes wrong?

13

Performance surprises
Interactive load

Batch time surprises

System abusers!
“all transactions this year”,
“average since 1967”, ...

14

Environment bombshells
Constraints and contention

Unexpected behaviour

Integration points

15

Failures happen
Software defects

Platform failures

Environment failures

16

Security tangles

Security is simple in
Development

Much more complex
in Production!

17

Finding Solutions

18

Architects Know This - Right?

19

scalability
deployability

monitorability

operability

availability

interoperability

performance

security

testability

capacity
reliability

TOO HARD

Architectural Heresy
Architects obsess about system qualities

usually results in good production characteristics

However teams just find this all a bit hard
too many qualities, need to get functions delivered

… and we must empower teams
architects can’t be responsible for all of the software
being “production ready”

20

Key requirements for production
Functionally correct

does what the business process requires

Stability
behaves predictably in all situations

Capacity
can process the workload required (at all times)

Security
limits access to those who are authorised to have it

21

Solution Framework

Correctness Stability Capacity Security

Design
Principles

Technology

Practices

22

Solution Framework

Correctness Stability Capacity Security

Design
Principles

Technology

Practices

Simplicity

22

Solution Framework

Correctness Stability Capacity Security

Design
Principles

Technology

Practices

Simplicity

Resource
Governor

22

Solution Framework

Correctness Stability Capacity Security

Design
Principles

Technology

Practices

Simplicity

Resource
Governor

Threat
Modelling

22

Solution Framework

Correctness Stability Capacity Security

Design
Principles

Technology

Practices

Simplicity

Resource
Governor

Threat
Modelling

22

Our focus today

General Principles
One Team
Automate
Measure and Improve (feedback loops)
Good Enough over Perfection

23

Timeless principles … that led to CD and DevOps

So How About DevOps?
DevOps helps get code to production

not much about whether it is ready for production

Developers still need to “productionise”
make sure the software meets the requirements for
production operation

Relatively few developers get much
training to prepare them for this

24

DevOps Principles
Communication
Automation
Lean thinking
Measurement
Sharing

25

CALMS - itrevolution.com/devops-culture-part-1

Solutions: Achieving Stability

26

Stability - design principles
Fail quickly

fail fast, timeouts

Isolate problems
flow control, circuit breakers, bulkheads,
asynchronous integration

Ensure steady state operation
housekeeping, predictable resource allocation,
governors, throttling

27

Stability - technology solutions

28

Stability - technology solutions

Fail fast

28

Stability - technology solutions

Fail fast

Bulkhead

28

Stability - technology solutions

Timeouts

Fail fast

Bulkhead

28

Stability - technology solutions

Timeouts

Fail fast

Bulkhead

Governor

28

Stability - technology solutions

Timeouts

Circuit
Breaker

Fail fast

Bulkhead

Governor

28

Stability - technology solutions

Timeouts

Circuit
Breaker

Fail fast

Bulkhead

Governor

Housekeeping

28

Example - Circuit Breaker

Normal

Checking

Tripped

err_returned

timeout

err_returned &&  
err_count > 10err_returned

29

Stability - practices
Repeatability

defined processes, practice scenarios, prelive
environments

Automation
automate the routine, automate the difficult
allow the human back in the loop on demand

Transparency
logging, monitoring, alerts, trends

30

Stability - process automation

Logging  
& Metrics

Monitoring

Automation

31

Stability - environments

Development

UAT

Prelive

Production

32

“Uncontrolled”

Stability - environments

Development

UAT

Prelive

Production

32

“Controlled”

“Uncontrolled”

Stability - environments

Development

UAT

Prelive

Production

32

“Controlled”

“Uncontrolled”

Stability - environments

Development

UAT

Prelive

Production

32

The DevOps Zone

Stability - production runbooks

Security, Audit, 
Compliance, ...

Production 
Operations

Developers
System design

Experience
Constraints

•Overview
•Install
•Backout
•Op Procs
•Investigation
•Recovery

33

Solutions: Achieving Capacity

34

Capacity - design principles
Minimise workload

efficiency is important

Flatten the peaks
move workload around

Design for the large (scalability)
understand where the time goes
multiply by a million

35

Capacity - technology solutions
Measure and minimise

understand where the work is

Caching and pre-computing
reduce the work to be done

Sharding and partitioning
separate workload to allow scale

36

Capacity - solutions

37

Capacity - solutions

Segment
Timings

37

Capacity - solutions

Segment
Timings

Static cache

37

Capacity - solutions

Segment
Timings

Static cache

Lookaside cache

37

Capacity - solutions

Segment
Timings

Static cache

Lookaside cache

Result set caching

37

Capacity - solutions

Segment
Timings

Static cache

Lookaside cache

Precompute

Result set caching

37

Capacity - solutions

Segment
Timings

Static cache

Lookaside cache

Precompute

Result set caching

Phased
batch

37

Moving Work Around
Utilisation

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Utilisation

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

38

Capacity - practices
Model and estimate
Test capacity on realistic environments

allows model calibration

Monitoring and trend analysis
tests theory against reality
spots impending storms before they hit

39

Solutions: Achieving Security

40

Security - key design principles
What they don’t have won’t hurt you

least privilege - grant the minimum needed

Security needs simplicity
what you can’t analyse you can’t be sure about

Don’t put your eggs in one basket
separate privileges to avoid total breaches

Fail safely

41

Security - solutions

42

Security - solutions
Authentication

& Roles

42

Security - solutions
Authentication

& Roles

Least privilege
/ separation

42

Security - solutions
Authentication

& Roles

Least privilege
/ separation

Privacy (TLS)

42

Security - solutions
Authentication

& Roles

Least privilege
/ separation

Privacy (TLS)

Trust (certs)

42

Security - solutions
Authentication

& Roles

Least privilege
/ separation

Privacy (TLS)

Isolation (firewalls
& zones)

Trust (certs)

42

Security - key practices
Model threats to identify mitigation
Define policy to know what to protect
Apply mechanisms to mitigate threats
Test security as well as functions

43

Security - techniques

Security
Model

Threat 
Model

44

Summary

45

Production is just different
it’s not yours and you need to respect that

Production is demanding
Correctness
Stability
Capacity
Security

Summary

46

Summary (ii)
Identify solutions by requirement & area

principles
technologies
practices

47

Summary (iii)
Production requirements and principles
go back to the age of the mainframe

CD and DevOps makes another step
welcome attention from developers
new tech enabling new possibilities
breaking down silos to make it happen

48

Books

Software Systems
Architecture

Second Edition

NICK ROZANSKI • EOIN WOODS

Working with Stakeholders Using Viewpoints and Perspectives
Second
Edition

49

Eoin Woods 
eoin.woods@endava.com  

www.eoinwoods.info  
@eoinwoodz

Thank you.

Questions?

50

Acknowledgements
http://www.icons-land.com
http://www.alamy.com/
http://www.42u.com

http://www.icons-land.com
http://www.alamy.com/
http://www.42u.com

