
The Past, Present and Future of Technical Debt
Learning from the Past to Prepare for the Future

Eoin Woods
Endava

125 Old Broad Street
London EC2N 1AR, UK
eoin.woods@endava.com

ACM Reference format:
EoinWoods. 2018. The Past, Present and Future of Technical Debt. In Proceed-
ings of TechDebt ’18: International Conference on Technical Debt , Gothenburg,
Sweden, May 27–28, 2018 (TechDebt ’18), 1 pages.
https://doi.org/10.1145/3194164.3194181

1 EXTENDED ABSTRACT
While technical debt has emerged as a formal concept relatively
recently [2] we have had technical debt from the earliest days of
software development, it has simply evolved in nature. So what can
we learn from past types of technical debt to allow us to prepare
for its future forms?

When we look back over recent software history, we can see five
identifiable evolutions of software systems [5], each one roughly
aligning with a decade.

Before and through the 1980s, software systems were largely
monolithic and tended to run on single computers, with software
being developed as monolithic "programs". As we moved into the
1990s, distributed systems became mainstream and the standard
style for an enterprise system became three-tier client server. The
Internet became a mainstream technology in the late 1990s, and
organisations developed Internet-connected systems, which were
"always on" rather than just "online" and could support difficult and
unpredictable quality properties. In the current era, we are building
Internet-native systems, where "the Internet is the system". These
systems are built from a combination of open source components,
remote Internet connected services and custom code, and their
services often form part of the Internet via publicly accessible APIs.

Following current trends, it seems that the next phase of evolu-
tionwill be to Intelligent-Connected systems, as artificial intelligence
(machine learning in particular) becomes mainstream [1], users ex-
pect context specific assistance, and fast, reliable networks allow us
to connect "things" (devices) to our systems as well as traditional
computers [3].

Software engineering practice evolves in response to new chal-
lenges and each era of computing has introduced new techniques
and technology but each has also introduced its own types of tech-
nical debt too.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
TechDebt ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5713-5/18/05.
https://doi.org/10.1145/3194164.3194181

In themonolithic era, the focus was structuring a single program,
with "spaghetti code", poor naming and unrestricted use of the
"goto" emerging as examples of the earliest types of technical debt.
As we moved into the distributed era, we ended up tangling presen-
tation and business logic code in our client/server user interfaces,
while in the Internet-connected era we distorted our systems to meet
performance and scalability concerns at all costs and often ended
up with poorly-designed automated tests being an inflexible tech-
nical debt of their own. More recently Internet-native systems often
introduce a mishmash of microservices with poorly understood
choreography and diverse internal implementations, references
to external APIs that became unsupported or difficult to use and
public APIs with many versions, all of which have to be maintained
"forever" due to callers who would not migrate to new versions.

So what types of technical debt do we expect in the future?
In the intelligent-connected era, amongst other things, applica-

tions will have machine learning features and we’ll need large
datasets to train machine learning models and provide context-
specific user experiences and we’ll have lots of non-computing
devices connected to our systems, providing data. So we’ll probably
get machine learning debt [4], ML models that we can’t explain,
models that we can’t improve because people rely on their quirks
(even if wrong). We’ll also have large inflexible data sets which our
systems and models rely on, and we’ll have unknown and unpre-
dictable collections of "things" connecting to our services, which
we can’t change because other people own them.

While this sounds like a daunting set of challenges, the intelligent-
connected era is only just beginning, so we have not yet incurred
significant amounts of technical debt. By looking to the past as our
guide to the future we can be forewarned and start find solutions
to our future technical debt before we have become overwhelmed
by it!

REFERENCES
[1] Jacques Bughin, Eric Hazan, Sree Ramaswamy, Michael Chui, Tera Alllas, Peter

Dahlström, Nicolaus Henke, and Monica Trench. 2017. Artificial intelligence the
next digital frontier? Discussion Paper. McKinsey Global Institute.

[2] Ward Cunningham. 1993. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.

[3] Denise Lund, Carrie MacGillivray, Vernon Turner, and Mario Morales. 2014.
Worldwide and regional internet of things (iot) 2014–2020 forecast: A virtuous
circle of proven value and demand. International Data Corporation (IDC), Tech.
Rep 1 (2014).

[4] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden technical debt in machine learning systems. In Advances in
Neural Information Processing Systems. 2503–2511.

[5] Eoin Woods. 2016. Software architecture in a changing world. IEEE Software 33,
6 (2016), 94–97.

https://doi.org/10.1145/3194164.3194181
https://doi.org/10.1145/3194164.3194181

	1 Extended Abstract
	References

