endava

BUILDING APPLICATIONS SECURELY

Eoin Woods
@eoinwoodz | www.eoinwoods.info
careers.endava.com

Software Architecture Summit
Bucharest, May 2021

EOIN WOODS

Endava’s CTO, based in London (6 years)
e 10+ years in products - Bull, Sybase, InterTrust
* 10 years in capital markets - UBS and BGI

Software engineer, architect, now CTO
Long time security dabbler concerned at increasing cyber threats to systems

Author, editor, speaker, community guy

SUNERIRE T | Software Systems

7 rchitecture itclure
; Q econd Ediion__|
¢ /% :
| 7 =

NICK ROZANSKI - EOIN W00DS

Aligning Architecture Return of the
Work with Agile Teams Architecting in the Gaps Pragmatic Architect
- ‘A Metaphor for Architecture Work

'@’endava

'@'endava
CONTEXT OF THIS TALK

‘endava

COMMON WEB SECURITY THREATS

... and what to do about them

=
Eoin Woods endava

ndCIVCI @eoinwoodz

Endava

e

Security Beyond the Libraries I n k

BUILDING APPLICATIONS SECURELY

JAX London 2019

Eoin Woods
Endava
eoin.woods@endava.com / @eoinwoodz HFondava Eoin Woods
@eginwoodz
Endava

link

Secure by Design

the Architect’s Guide to Security Design Principles

Eoin Woods, Endava
@eoinwoodz

link

https://speakerdeck.com/eoinwoods/secure-by-design-at-accu-2019
https://speakerdeck.com/eoinwoods/common-webapp-vulnerabilities-and-what-to-do-about-them-2018-update
https://speakerdeck.com/eoinwoods/system-security-beyond-the-libraries

Agenda

The Threat

Mitigation via Software Security

Principles for Secure Implementation
Implementation Guidelines

Summary

&5

[|

BUILDING APPLICATIONS SECURELY

The Threat

e
"’;’endava

SECURITY THREATS

*We need systems that are dependable in the face of
* Malice, Mistakes, Mischance

*People are sometimes bad, careless or just unlucky

e System security aims to mitigate these situations

CYBERTHREAT REAL-TIME MAP 3i€ e TODAY’S THREAT LANDSCAPE

MAP STATISTICS DATA SOURCES BUZZ WIDGET f ,
Today’s internal application is tomorrow’s “digital channel” ;
.
System interfaces on the Internet Q
Introspection of APIs £ .
0 £ o '
. ey . \
. .- . — R b S
_Attacks being "weaponized” - % SN, o A e 4
- v\"x . = 4 3 Z3 /\/ O e
7 “’

KASPERSICYE < 2010 50 xompersty tab. att riont: §£ & (in

@endava
DATA BREACHES: 2005 - 200/

2007 % ‘. ‘o ® &

200@ . o .

2005

2004
David McCandless & Tom Evans sources: New York Times, Forbes, The Guardian, Tech Radar, BBC,
Information is Beautiful PC Mag, Tech Crunch & others

see the data

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

@endava
DATA BREACHES: 2008 - 2011

@endava
DATA BREACHES: 2012 - 2015

@endava
DATA BREACHES: 2016 - 2018

V Nametests |
\ 120,000,000
Apol o : Houzz MyHeritage ‘ TicketFly o
200.000.000 Chinese Quora witter
resume |e(]k . 100,000,000 330.000.000
2018 202,000,000 LOCGIBIOX BrGS| |
" : (MyFitnessPal '
A 150,000,000
F \

~ - b .
Cathay 1c:gf>oc?ci>?> Marri pﬁ

Pacific International
Airways 383,000,000

Aadhaar Facsbook- " Spambot

1,100,000,000) 711,000,000
Equifax

143,000,000 Google+Irv1tg=<c:gssuan

_ MVNOs River City

» g | Media

Mail. 340,000,000
ru Turkish
citizenship

. & Dailymotion . . database YG hOO
Friend Finder , o),-4 500,000,000
Network LinkedIn | | on Blocio

117,000,000
412,000,000 i Tumblr

Fling
A MySpace
164,000,000 s ‘

'@'}endava
DATA BREACHES: 2019 — 2021

2021 . o '

Experian pOkig'clmi

Brazil : mobile

Sl Foccbook (REETAEGaES
Oce 00 : ' - SolarWinds ®

533,000,000
e . ;
)
Dubsmash : OXYDGfO
162,000,000 Ind ian 380,000,000

~ 4 citizens ye
.. '500px)y 275.000,000
8fit » ‘ Capital (‘ <« YouNow

Wawa
2019 X One ‘ I ' 30,000,000

P . Facebook
ShareThis

Canva
139,000,000

Animoto ,. EyeEm
- 420,000,000 IXigO

\Y Nametests
\ \ 4 120,000,000
Apol lo Hote MyHeritage Ticketfly
200,000,000 Chinese fas) - Quora y
resume leak 100,000,000 | SKY

LocalBlox ;
2018 202.000.000 Brasil

Twitter
330.000.000

@endava
THE IMPORTANCE OF SOFTWARE SECURITY

Other Payment Cards Stolen Assets

* Verizon research security 2%
incidents annually

* There are many root causes Applzigi/tions

e Applications are significant

Crimeware
* This study suggests that about a _ , § 6%

Denial of Service

. . 5 Cyber-Espionage
quarter are application related 62% o

https://enterprise.verizon.com/resources/reports/dbir

&5

-]

BUILDING APPLICATIONS SECURELY

Mitigation via Software Security

'@'endava
DIMENSIONS OF SECURITY PRACTICE

SECURE INFRASTRUCTURE

SECURE APPLICATION DESIGN DESIGN

=== == = = = =

SECURE APPLICATION SECURE INFRASTRUCTURE
IMPLEMENTATION DEPLOYMENT

SECURE SYSTEM OPERATION

@endava
SECURE APPLICATION IMPLEMENTATION

____________\

Secure Design
Inputs

HOW YOU BUILD |__ 2 S-SDLC '

WHAT YOU DO # PRINCIPLES &

SECURE APPLICATION
IMPLEMENTATION

GUIDELINES

HOW YOU VERIFY [2 \;F:I_SIEI:T(I;O&N

'@endava
SECURITY IN THE DEVELOPMENT LIFECYCLE

SAFE
Code

SAFECode
Fundamental
Practices

Microsoft SDL OWASP SAMM Building Security In
Maturity Model

'@'endava
MICROSOFT SECURE DEVELOPMENT LIFECYCLE

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security
Training Gates / Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

 Developed by Microsoft for their product groups
17 practices across the lifecycle

 Good resources available from Microsoft

* Needs to be applied to your development lifecycle

<¢:"endavq
OWASP SOFTWARE ASSURANCE MATURITY MODEL

SAMM Overview
Software
Development

Business Functions

(] mcoreraammom (7] Opersions

Security Practices
Strategy & Education & Security Design Security Environment

Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Implementation Issue Operational
Compliance Assessment Architecture Review Management Enablement

 Project from OWASP volunteers since 2008
 Governance, Construction, Verification & Operation
 Three key practice areas for each

 Maturity model rather than an SDLC

e
**endava

“BUILDING SECURITY IN” MATURITY MODEL

* Synopsys study of software
security practice

e Member firms surveyed to
establish practices

e Statistics & trends published

* Organisations can
“benchmark” against
aggregated findings

CONFIGURATION STRATEGY
MANAGEMENT & e
VULNERABILITY ®
MANAGEMENT ’

25 ’
2.0
SOFTWARE
ENVIRONMENT -

PENETRATION
TESTING

SECURITY
TESTING

|

CODE ’

BESIERS ARCHITECTURE
ANALYSIS

ALLFIRMS (122)

COMPLIANCE
& POLICY

TRAINING

R , ATTACK
MODELS

SECURITY FEATURES
& DESIGN

STANDARDS &
REQUIREMENTS

EXAMPLEFIRM

SAFECODE

e Membership organization of
some leading software
security firms

e Publish free on-demand
training, blogs and guides

Fundamental Practice‘
for Secure Software -
Development

Essential Elements of a Sec >
Devi IpthfyIPgm

Third Editio

March 2018 l

'@'endava

&5

|

BUILDING APPLICATIONS SECURELY

Principles for Secure Development

Ao
g;’endava

SECURE DEVELOPMENT PRINCIPLES

Security is everyone’s concern

Focus continually through the lifecycle
Good design improves security

Use proven tools and technologies
Automate security checking

Verify your software supply chain

N o U A W b=

Generic and technology specific concerns matter

'C’E'endqva
SECURITY IS EVERYONE’'S CONCERN

A “concern” not a "feature”
* Needs team-wide awareness

* Avoid security being a
“specialist” problem

* Integrate security awareness into
normal dev tasks

O
’;’endava

SECURITY CHAMPIONS

* Security is everyone’s problem ...
but always someone else’s

* You need enthusiastic advocates
* People who will take ownership

* Self-selecting “security champions”

* Invest, involve, promote, support
e don’t isolate them!

(:"e’endava
FOCUS CONTINUALLY THROUGH THE LIFECYCLE

e Cannot “test security in”

* Traditional security testing
delays deployment

* Need continual security work
through lifecycle v

 analysis, design, dey, test, ...

'@endava
A WORD ON DEVSECOPS

“Secu ritylsays no” @)@

We're all security engineers now

= “Security” is another silo to integrate
into the cross-functional delivery team

GOOD DESIGN IMPROVES SECURITY

 Careless design often creates
vulnerabilities

* Strong types, simple
mechanisms, well structured
code all aid security

* Simpler implementation is easier
to understand & secure

<¢:"endavq

=
Bl

<¢:"endavq
GOOD DESIGN IMPROVES SECURITY

public class OrderRequestHandler extends HttpServlet {

private OrderService orderService;

public void init() throws ServletException {...}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

l int qty = Integer.parseInt(rFquest.getParameter(s: "order.quantity"));
String sku = SecHelper.escapeStr(request.getParameter(s: "order.item.sku")) ;

int ordered = orderService.orderItem(sku| qty)|;

response.getWriter().println(renderResponse(sku, qty, ordered));

Perfectly “reasonable” code ... but with a potential security problem

... what happensif gty <0 ?

<¢:"endavq
GOOD DESIGN IMPROVES SECURITY

public class OrderRequestHandler extends HttpServlet {

private OrderService orderService;

public void init() throws ServletException {...}

public class OrderQuantity {
public void doG static private final int MAX_VALUE = 100 ;

throws

private final int value ;

public OrderQuantity(int qty) {

OrderQuanti if (qty < 0) {
SkuValue sh throw new IllegalArgumentException("Quantities must not be negative") ;
}
OrderQuanti if (aqty > MAX_VALUE) A{
throw new IllegalArgumentException("Maximum quantity of " + MAX_VALUE + " exceeded by " + qty) ;
F

response.gg
this.value = qty ;

I

Example of DDD improving security “for free”

'@’endava
USE PROVEN TOOLS AND TECHNOLOGY

e Software is hard to secure

 Security software is very hard to
secure

* Vulnerabilities emerge over time
(from attacks)

* Proven tools & technology
reduce production vulnerabilities

@endava
AUTOMATE SECURITY CHECKING

* Some security checks can be
automated — SAST, DAST

* Consistency and efficiency

* Find (some) problems earlier

* Challenges include false positives
and responding effectively

* Only ever part of the solution

<¢:"endava
VERIFY YOUR SOFTWARE SUPPLY CHAIN

Security issues License issues

* 3rd party code is a possible risk — m [o o= |[& & | o
often open source

* Tools exist for OSS security, risk
& compliance:

* BlackDuck, Whitesource,
Sonatype, Snyk, ...

* Scan code to find dependencies
* Checks for known vulnerabilities

e Alerts and dashboards for
monitoring

aaaaaaaaaaaaaaa

<¢:"endavq
GENERAL AND SPECIFIC CONCERNS MATTER

* Many security concerns @ /M

transcend technology
* Injection, logging, ... SQL Injection

1 package my;

* Technical stacks also have their o e s s

import javax.servlet.Servlet;

° ° 6 import javax.servlet.ServletException;

f k [7 import javax.servlet.http.HttpServlet;
S p e C I I C We a n e S S e S [2 import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

[} C/C++ - m e m O ry m a n age m e nt public class TestServlet extends HttpServlet implements Servlet {

static final long serialVersionUID = 1L;

* Java — reflection, serialisation T
[} Pyth O n — m Od u Ie Ioa d i ng protected void doGet (HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
2 doPost (request, response);

protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
2 response.getWriter () .println("blah"”);

&5

]

BUILDING APPLICATIONS SECURELY

Implementation Guidelines

'@’endava
GENERIC SECURE CODING GUIDELINES

SAFE

Code CWE

SAFECode Secure OWASP Secure Common Weaknesses
Coding Practices Coding Practices Enumeration

@’endava
TECHNOLOGY SPECIFIC GUIDELINES

TaE CERT
STHE C(EjRT' C CORACLE SECURE m
ECURE CODING ODING STANDARD o
. STANDARD) . M ICI’OSOﬁZ

.NET Secure
Coding Guidelines

voo - -
Ty eooee
®_ o °

Secure Coding
i in C and C++
4 SECOND EDITION

Secure Coding
Guidelines

Ao
g;’endava

SECURE CODING GUIDELINES

* There are quite a few standards, which overlap significantly

* Need time to understand and apply
* Oracle Java Security Guidelines contains 71 guidelines in 10 sections

* Something for your Security Champions to work through
*you need the practical minimal subset for your threats and risks

GENERIC EXAMPLE — INJECTION ATTACKS

Unvalidated input passed to any interpreter
 Operating system and SQL are most common
* Configuration injection often overlooked

SELECT * from tablel WHERE name = ’'$1’
Set ‘%1’ to ‘ OR 1=1 -- ... this results in this query:

SELECT * FROM tablel WHERE name = '’ OR 1l=1 --

Ao
g;’endava

Defences include “escaping” inputs, bind variables, using white lists, ...

(:"e’endava
JAVA SPECIFIC EXAMPLE — RANDOM NUMBERS

Java has two random number generators:
java.util.Random and java.security.SecureRandom

Guess which one isn’t random but most people use?

Random rand = new java.util.Random() ;
SecureRandom secrand = new java.security.SecureRandom() ;

long utilTimeMsec = timeALambda(iterations: 100000, () —> rand.nextInt()) ;
long secTimeMsec = timeALambda(iterations: 100000, () —> secrand.nextInt()) ;
System.out.println("Util Random Execution Time: " + utilTimeMsec);
System.out.println("Secure Random Execution Time: " + secTimeMsec);

S$> java com.artechra.RandomTest
Util Random Execution Time: 7
Secure Random Execution Time: 49

O
**endava

PYTHON SPECIFIC EXAMPLE — UNPICKLING DATA

Python has a serialization system called “Pickle”
 Java, C# and others have similar mechanisms

A useful way of moving data around ... and a security liability

import pickle

malicious_cmd = "__import__('os"').system('ls -1')"

pickle_txt = 'c__builtin__\neval\n(V{0}\ntR."'.format(malicious_cmd)
pickled_data = bytes(pickle_txt, 'utf-8')
pickle.loads(pickled_data)

To be fair, the docs clearly state:
“The pickle module is not secure. Only unpickle data you trust.”

Ao
g;’endava

SECURITY TESTING AND VALIDATION

* Like any other critical system quality application security needs to be tested early

and often — mix of automation and manual techniques

» Detailed description of testing is beyond this talk
* But we need to be aware of it so that we know someone is doing it

* Automated security testing: Static Analysis (SAST) and Dynamic Analysis (DAST)
* Automated functional testing: do the application security features work?
* Exploratory testing: fuzz testing and penetration testing

* Platform testing: testing application’s use of platform & configuration

Remember: security also needs to be tested from an infrastructure and operational perspective!

&5

|

BUILDING APPLICATIONS SECURELY

Summary

s
g;’endava

SUMMARY (1)

* Much of the technology we use is inherently insecure
* Mitigation needs to be part of application development

* Attacking systems is becoming industrialised
* Digital transformation is providing more valuable, insecure targets

* Secure implementation is part of an end-to-end approach

SUMMARY (1)

* Three aspects to secure implementation

* HOW do you go about building the software? (SDLC)
 WHAT do you do to build the software? (Principles, Guidelines)
* HOW do you verify what you build? (Testing, Validation)

* We explored a set of principles

e Security is everyone’s concern * \Verify your software supply chain
* Continual focus through the lifecycle ¢ Generic and technology specific
* Good design improves security concerns matter

* Use proven tools and technologies
* Automate security checking

e
"’;’endava

e
"’;’endava

SUMMARY (1)

* Both generic and language-specific concerns

* A number of sets of guidelines exist ... use them!

* SAFECode, OWASP Secure Coding Practices, Oracle Secure Java
Guidelines, Microsoft .NET Secure Guidelines, CERT Coding Practices

* We haven’t explored security testing and validation

e critically important and another area to learn about
*involve specialist experts, particularly for manual aspects

'@’endava
BOOKS & PUBLICATIONS

. .- Software Systems 1
- modeling A[EhIIECII[IfB B

GENBg e Cey : v PRACTICE

INTERNATIONAL BESTSELLER

Building

Necure \oll\\(u(‘ — APPLIED % ":LE‘ . l.

CRYPTOGRAPHY Ui Al

7 |ZANSKI - EOIN WOODS

; 0T — ‘
OREILLY i o r' ’ 3RD EDITION Protoce

.........
. John Viega : S E C U R ‘ T\/ S ii
Threat Modeling &M - P :
A Practica Guide for Development Teams E N G | N E E R‘ N G g SLF s) <
&Y ecurity in aNE

Fundamental Practice! e
for Secure Software -
........... . - Development

A GUIDETO . : i g
. ' BUILDING DEPENDABLE . _— ‘
DISTRIBUTED SYSTEMS

Apphcatlon'
Security

Forowond by Reeny Sondhy e Laura Bel, Mchaed Brunton-Spall
- Rich Smith & Am Bied

«es
‘:’endava

WHAT DO | DO NEXT?

Get started ...
Work out where you are ...
Get some people interested ...
Work out what to improve next ...

Improve that thing ...

REPEAT |

@endava
THANK YOU

Eoin Woods

Endava

@eoinwoodz
eoin.woods@endava.com
careers.endava.com

51

