
1

1

Information Systems
Architecture

Stakeholders, Viewpoints,
Perspectives

Nick Rozanski
nick@artechra.com
www.nick.rozanski.com

Eoin Woods
eoin@artechra.com

www.eoinwoods.info

2

2

Content
Defining Software Architecture
Stakeholders
The Software Architecture Problem
Viewpoints to Guide Structure
Perspectives to Guide Qualities
Example Application
Uses for Viewpoints and Perspectives

3

3

Defining Software Architecture
A common definition …

The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software elements the externally visible
qualities of those elements, and the
relationships among them

Len Bass, Paul Clements and Rick Kazman (SEI)
Software Architecture in Practice, 2nd Edition

There are a vast number of definitions of software architecture (the SEI have collected dozens
on their web site http://www.sei.cmu.edu/architecture/definitions.html) but we use the
Bass, Clements and Kazman definition as a starting point.

The key points are:

(1) Architecture defines structures of elements;
(2) Architecture defines the relationships between elements;
(3) Architecture results in a system exhibiting a set of quality properties, derived from the

properties of its constitent parts.

4

4

Defining Software Architecture
An alternative definition …

The set of system design decisions that
dictate the fundamental structure and
properties of a system

Thus, the set of decisions that will cause the
system to fail if made incorrectly

An alternative, less serious definition is that software architecture is “the set of design
decisions which, if made wrongly, cause your project to be cancelled“.

5

5

Role of Software Architecture
A crucial bridge between requirements and design

Requirements

Design

Architecture

Software architecture doesn‘t exist in isolation, but contains elements of both requirements
analysis and system design. It also has its own unique elements of course.

The key point is that architecture acts as the bridge between the problem-centric world of
requirements (“what we want”) and the solution-centric world of design (“how should we do
it”). People who are experts in one of these areas are rarely experts (or even all that
interested) in the other. Architects act as a bridge between these two areas. Architects
understand enough about the requirements to know what is important and what tradeoffs are
possible, and perform enough design to define a structure that can meet those requirements
and inside which the detailed design decisions can be made.

6

6

Architecture & Requirements
Requirements are an input to architecture

Requirements frame the architectural
problem
Stakeholder needs and desires

Architecture must influence requirements
“The art of the possible”
Stakeholder understanding of risk/cost
Stakeholder understanding of possibilities

While it‘s pretty obvious that requirements are fed into the architecture process, it‘s not always
understood that this is a two way thing. By performing architectural design, architects quickly
gain an understanding of what is and isn‘t possible with respect to a set of requirements.
They can use this knowledge to feed back into the requirements process and help
stakeholders make decisions about what should be built.

Architects help stakeholders to make these decisions by explaining the relative risks and costs
of different requirements to them. This helps stakeholders to work out what they really need,
as opposed to what they’d like if it were possible easily and cheaply.

As Otto von Bismark‘s said of politics, software architecture can be seen as the “art of the
possible”, with architects being best placed to understand what is and isn’t possible and
helping to communicate this to stakeholders, so helping both to manage expectations and
open up new possibilities.

7

7

Quality Properties
Non-functional characteristics (“-illities”)

Performance, Security, Availability, …
Often crucial to stakeholders

Slow functions don’t get used
Unavailable systems stop the business
Security problems cause headlines

Yet often an after-thought

When people start their software design careers, they normally focus on what the software
needs to do. More experienced software designers know that while functionality is part of the
puzzle, it‘s by no means always the most important part. Quality properties (also known as
“non functional requirements”) are a crucial part of

Many systems have failed terribly because they failed to exhibit one or more important quality
property, such as security, availability, maintainability and so on. There is an old saying that
there is no such thing as bad publicity, but the headline “XYZ Inc’s Customer Details Sold on
Internet” is probably an exception. For Internet facing systems, it’s often the case that
qualities such as security and availability are crucial to avoid negative publicity for the
system’s owner.

The problem we have often seen is where quality properties aren’t considered until late in the
day and it can then be very difficult to retro-fit these properties to a system because they
cause fundamental architectural changes which are expensive to do late in the lifecycle.

In summary, a key part of the role of a software architect is ensuring that your system exhibits
an acceptable set of quality properties.

8

8

Quality Properties

Addressing quality properties is a key
architectural task

Understanding real stakeholder needs
Understanding what is possible
Making the key trade-offs to allow delivery
Avoiding expensive “retro-fit”

It is the job of the architect to ensure that your system exhibits an acceptable set of quality
properties. It is unlikely that you can achieve the perfect set (as, if asked, any system acquirer
would like their system to be 100% reliable, delivered at zero cost, with zero time to delivery
and infinitely scalable and maintainable). Because you can‘t achieve the perfect set an an
acceptable cost, you need to understand what is really needed and what is really possible and
try to match these two, often by making trade-offs between conflicting qualities. For example,
the overheads of achieving a high degree of security often conflicts with efficiency or
performance goals and can make a system significantly less usable so you need to achieve
an acceptable balance between them.

What you must try to avoid is needing to change the set of fundamental system quality
properties late in the development lifecycle as this is usually expensive and distruptive due to
the fundamental architectural changes needed to achieve this.

9

9

Stakeholders
Identifying Stakeholders

People, Groups, Entities
Those who have an interest in or concerns
about the realisation of the architecture

Importance of Stakeholders
Architectures are built for stakeholders
Decisions must reflect stakeholder needs
Involving a wide stakeholder community
increases your chances of success

An important concept within software architecture is that of the “stakeholder”, who is any
person, organisation or group with an interest in the system being developed. When you think
about it, we only build systems because stakeholders need them and so we must make sure
that all of our architectural activities are directed at meeting the needs of at least one
stakeholder. If we’re doing something that doesn’t meet the needs of a stakeholder, then why
are we doing it?

In order to deploy a system successfully, it is nearly always important to identify and engage
with your stakeholders as early as possible and make sure that you have a good,
representative set of stakeholders (see next slide).

10

10

Stakeholders
Attributes of a good stakeholder

Informed, to allow them to make good
decisions
Committed, to the process and willing to
make themselves available in a constructive
manner, even if decisions are hard
Authorised, to make decisions
Representative, of their stakeholder group so
that they present its views validly

It is important that you try to engage effective stakeholders who will participate in the
architectural process positively and make a net contribution. Of course, such people are not
always easy to find, so when considering stakeholders we look for people who are informed,
committed, authorised and representative (RACI – “racy”).

11

11

Stakeholder Groups
Acquirers pay for the
system
Assessors check for
compliance
Communicators create
documents and training
Developers create it
Maintainers evolve and
fix it
Suppliers provide parts of
the system

Support Staff help people
to use the system
System Administrators,
keep it running
Testers verify that it
works
Users have to use the
system directly

It is also important to spread your net widely when considering stakeholders. Many
stakeholders aren‘t immediately obvious and indeed, some of them (such as acquirers or
assessors) may never use the system. Stakeholders can be generally divided into two
groups: those who want the system and those who actively or passively want to resist it. For
example, many internal auditors and regulation specialists (members of our “Assessors”
group) are goaled on reducing and managing risk and they may consider your system to
actively imperil their goals. Such stakeholders can be just as important to consider as the
more obvious ones (like end users and software developers) as they may have the power to
prevent your system going live if their needs are not met.

This slide shows some of the more important stakeholder groups for enterprise information
systems.

12

12

The Challenge
Essential difficulties

Multi-dimensional problem
Highly complex mix of people and technology
Diverse stakeholder community to serve
Making trade-offs is essential but hard
Often no “right” answer

As architects, we‘d probably all agree that our role is a challenging one and its useful to stop
for a moment to consider why. Some of the challenges are fundamental to the role (essential
difficulties) while others are the result of the current state of practice (accidental difficulties).

The essential difficulties of software architecture are that we have to deal with a highly multi
dimensional problem (functionality, performance, scalability, security, delivery times, budgets,
...) in a complex environment where many different specialists and complex pieces of
technology must work together in order to deliver a system. We also typically have to deal
with a diverse stakeholder community, with overlapping and conflicting needs.

In such an environment, we have to accept that there isn‘t a single right answer and we may
well have to be prepared to settle for an acceptably bad one. Philippe Kruchten summed the
problem up nicely in one of his papers when he said ”The life of a software architect is a long
and rapid succession of suboptimal design decisions taken partly in the dark”!

However, these are all fundamental aspects of the job of the architect and we shouldn’t expect
any of these challenges to recede significantly due to technological or methodological change.

13

13

The Challenge
Accidental difficulties

Little standardisation in description
Difficult to compare and discuss alternatives
Little standardisation in architectural activities
Little sharing of proven practice and known
problems and their solutions
No framework for handling quality properties

In contrast, there are some challenges that most software architects face that are more likely
to be solved by improving the practice of software architecture.

At present, there is little standardisation in how architectures are described and this means
that it is often difficult to compare and discuss alternatives without huge amounts of face to
face communication. We also tend to go about the process of software architecture in
individual ways, with relatively little shared language or process for how we do it. There is
also a limited amount of knowledge sharing between architects in terms of sharing proven
practice and the inevitable sets of pitfalls and solutions that experienced architects learn over
time. Finally, while there are some frameworks for structuring architectural descriptions, these
have tended to focus on architectural structures rather than qualities and so we tend to handle
quality properties in a relatively ad-hoc manner, which can be unfortunate.

14

14

The Challenge
To help meet the challenge

Organise the architectural design process
roles & activities, relationship to requirements &
design

Define the use of architecture artefacts
which models? when? why?

Capture, classify and share knowledge
best practice, problems and pitfalls, proven
solutions

To help to meet the challenges of software architecture, the following approaches would
appear to be potentially useful:

• Organise the architectural design process according to a standard model so that, even it it
is a simplification of reality, we have some standard language and understanding of how to
go about the process.

• Similarly, we can define a set of commonly used architecture artifacts and capture lessons
learned that can guide architects to use these artifacts at the right time, for the right
purposes.

• More generally, if we can capture and share knowledge between architects, then we will
have a better chance of learning how to overcome the challenges of the job from other
people‘s experiences.

15

15

Architectural Viewpoints
Help to deal with architectural structure

Decompose arch. description into views
each view addresses one aspect of the system
functional view, deployment view, …

Guide development of views via viewpoints
viewpoint contains proven practice, pitfalls, …
each view defined by one viewpoint

Organises the process and the artefacts

The use of Viewpoints and Views is an existing approach, that we have used successfully, for
dealing with complex architectural structures.

Both ideas are simple but effective:

• Views are used to structure the architectural description into a number of pieces, each
describing one aspect of the system (the functional structure, the deployment environment,
the development constraints and so on). The architectural description is made up of a set
of views.

• Viewpoints provide templates for the views and as such a particular viewpoint is used to
develop each view. A viewpoint provides the architect with guidance by defining what the
corresponding view should or may contain, how to represent it, how to go about developing
it, potential problems to be aware of and their solution, and so on.

The relationship between view and viewpoint is similar to that of object and class.

Using viewpoints and views helps to organise both the process being followed (the viewpoints
providing implcit structure and explicit guidance) and the artefacts produced (the views
being an organisation of the architectural description).

16

16

Architectural Viewpoints
Well understood, widely applied

RUP/Kruchten “4+1” set (1995)
RM-ODP set (1995)
Siemens set (1999)
Garland and Anthony set (2003)
Rozanski & Woods set (2005)
Conceptual basis in IEEE 1471 (2000)

The architectural viewpoints idea isn‘t all that new, having academic roots back in the 1970s
from David Parnas and more recently in the 1990s from Dewayne Perry and Alex Wolf.
Widespread awareness of viewpoints started to spread in the mid-1990s and since then a
number of sets of viewpoints have been developed. Some of the important ones are listed
on this slide:

• 4+1 – Philippe Kruchten and the Rational Corporation, published in IEEE Software in 1995,
probably the earliest mainstream description.

• RM-ODP is an ISO standard for describing distributed object systems and their viewpoint
set was published as part of the standard in 1995 too.

• Christine Hofmeister, Rod Nord and Dilip Soni defined a set for realtime and embedded
systems while working at Siemens Research, based on the way that Siemens software
architects worked. Documented in their book “Applied Software Architecture” in 1999.

• Jeff Garland and Richard Anthony defined a set of viewpoints for information systems,
using UML as the base description notation across the views, documenting the set in their
book “Large Scale Software Architecture” in 2003.

• We defined a set of viewpoints, based on the 4+1 set in our book “Software Systems
Architecture: Working With Stakeholders Using Viewpoints and Perspectives” in 2005.
Conceptually, our set is like G & A’s, being practitioner focused, the result of our own
experience and aimed at information systems, although the set is a lot smaller.

A conceptual model for how viewpoints and views relate to each other and their environment
(systems, architects, stakeholders and so on) forms the basis of IEEE Standard 1471,
which was published in 2000 (and, in part, inspired both the Garland and Anthony and
Rozanski and Woods sets).

17

17

Viewpoints and Views
IEEE 1471 provides standard definitions

A viewpoint is a collection of patterns, templates
and conventions for constructing one type of view. It
defines the stakeholders whose concerns are
reflected in the viewpoint, and guidelines and
principles and template models for constructing its
views.
A view is a representation of all or part of an
architecture, from the perspective of one or more
concerns which are held by one or more of its
stakeholders.
from IEEE Standard 1471 – Recommended
Practice for Architectural Description (2000)

IEEE Standard 1471, Recommended Practice for Architectural Description, was published in
2000 and provides nice definitions for all of the conceptual entities that it discusses. The
viewpoint and view definitions are reproduced here for reference.

18

18

Viewpoints and Views

This UML class diagram presents part of the conceptual model for viewpoints and views:

• An architectural description is a collection of one or more views.
• A viewpoint is used to define (the structure and content of) zero or more views.
• The structure and content of a particular view is defined by exactly one viewpoint.

Normally, only one view corresponding to a particular viewpoint would appear in an
architectural description. (In UML, this could be defined as the OCL constraint: Context
ArchitecturalDescription inv UniqueViews self.View-
>isUnique(Viewpoint)).

19

19

Example Viewpoint Set

[Rozanski & Woods, 2005]

An example of a viewpoint set for information systems work is the one we defined in our book.
Briefly, our viewpoints are:

• Functional – functional structure, elements, responsibilities, connectors, interactions.
• Information – information stored, ownership, information models for interfaces (e.g.

messaging), information latency and so on.
• Concurrency – packaging of elements into runtime processes and threads, with

coordination as required.
• Development – architectural constraints on software development (CM, design patterns,

layering, tiers, ...)
• Deployment – runtime environment, nodes, links, software and hardware dependencies.
• Operational – operational strategies for migration, installation, backout, parallel run,

operational control, support and so on.

The first three really define the design of the software itself, the development viewpoint guides
it being built, while deployment and operational define the environment it requires in order
to run in production.

20

20

Example Viewpoint Set
Core architectural structures

Functional
elements, connectors, interfaces, responsibilities,
interactions

Information
entities, constraints, relationships, timeliness,
usage, ownership

Concurrency
processes, threads, coordination, element to
process mapping

The functional, information and concurrency views define the core architectural structures of the
software. Their important concepts are outlined on the slide.

21

21

Example Viewpoint Set
Working with developers

Development
layers, module structure, standard design,
codeline

Moving towards deployment
Deployment

hardware, network, software dependencies,
process to node mapping

Operational
installation, migration, administration, support

The development view is where the architect defines the (smallest possible!) set of constraints on
software development.

The deployment and operational views define the required runtime environment and how the system
will get there and be run and supported, respectively.

22

22

Example Viewpoint Set
Rozanski/Woods Viewpoint Set

Aimed at large scale information systems
Extension and refinement of Philippe
Kruchten’s “4+1” set

renamed “Logical”, “Process” and “Physical”
added “Information” and “Operational”

Standard content for viewpoints
applicability, concerns, models, stakeholders,
problems & pitfalls, solutions, checklists

Our viewpoint set is aimed at architects working on large scale, mainstream, information systems
(and specifically not embedded systems).

We started with 4+1, applied it for some time and then decided to improve it. Some improvements
are trivial (such as renaming views), others are quite substantial (such as adding an operational
view).

We use a standard structure for our viewpoints, namely:
• Applicability - where is the content of this viewpoint useful and relevant?
• Concerns – what are the architectural concerns that views based on this viewpoint address?
• Models – what models should a view based on this viewpoint contain?
• Stakeholders – who are the stakeholders who are likely to be interested in the content of views

based on this viewpoint?
• Problems and Pitfalls – what is likely to go wrong in this area and what should you do about it?
• Checklists – what do you need to remember in order to avoid problems?

23

23

Functional Viewpoint

functional capabilities
external interfaces
internal structure
design qualities

Concerns

design of runtime functional elements and their
responsibilities, interfaces, and primary interactions

Content

functional structure of the systemFocus

First half of the functional viewpoint summary.

24

24

Functional Viewpoint (ii)

poorly defined interfaces
poorly understood responsibilities
infrastructure modelled as functional elements
overloaded view
just drawing pictures
wrong level of detail
“God” elements
too many dependencies

Pitfalls

functional structure modelModels

Second half of the functional viewpoint summary.

25

25

Functional View Fragment

An example of a fragment of a functional view is illustrated on this slide. We suggest the use of a
UML component diagram to show functional structure, showing system elements, the offered and
required interfaces and any known constraints on the structure via tagged values. If there are
different sorts of functional element, we use stereotypes to indicate this. Obviously, behind the
picture, there needs to be a lot of text defining the model elements.

26

26

Information Viewpoint

information structure and content
information flow
data ownership and quality
timeliness, latency, and age
references and mappings
transaction management and recovery
data volumes
archives and data retention
regulation

Concerns

design of storage, manipulation, management, and
distribution of information

Content

information structure, ownership and processingFocus

First half of the information viewpoint summary.

27

27

Information Viewpoint (ii)

data incompatibilities
poor data quality
unavoidable multiple updaters
key matching deficiencies
poor information latency
interface complexity
inadequate volumetrics

Pitfalls

static data and metadata structure models
information flow models
information lifecycle models
data ownership and access models
volumetric models

Models

Second half of the information viewpoint summary.

28

28

Information View Fragments

StatsSet Variable

Observation

Deduction

DerivedMeasure

Example fragments of information view content are shown here.

• An entity relationship diagram (ERD) defining the key stored data and inter-relationships for the
system.

• An entity life history (ELH) diagram, showing the states that the “Deduction” entity can pass
through and the ordering constraints on these states. (In UML, you could use a state chart for this
too … we use ELHs because they’re quite accessible, and for entity state changes, seem to be
more easily understood by many people than state charts).

29

29

Information View Fragments (ii)

0

5

10

15

20

25

30

2005-01 2005-02 2005-03 2005-04

Observation

Deduction
DerivedM easure

--C,U,DBulk Loader

C,U,D--Statistics
Calculator

RC,R,U,DRStatistics
Accessor

Derived
MeasureDeductionObservation

--C,U,DBulk Loader

C,U,D--Statistics
Calculator

RC,R,U,DRStatistics
Accessor

Derived
MeasureDeductionObservation

Further example fragments of information view content are shown here.

•An access matrix for key information entities (showing which elements Create, Read, Update and/or
Delete instances of a particular entity).
•A volumetrics data set, capturing the number of each key entity that are expected over time.

30

30

Concurrency Viewpoint

task structure
mapping of functional elements to tasks
inter-process communication & re-entrancy
state management
synchronization and integrity
task startup, shutdown and recovery from failure

Concerns

the concurrency structure, mapping functional
elements to concurrency units to clearly identify the
parts of the system that can execute concurrently,
and how this is coordinated and controlled

Content

packaging elements into processes and threadsFocus

First half of the concurrency viewpoint summary.

31

31

Concurrency Viewpoint (ii)

modelling of the wrong concurrency
excessive complexity
resource contention
deadlock and race conditions

Pitfalls

system-level concurrency model
system-level state model

Models

Second half of the information viewpoint summary.

32

32

Concurrency View Fragment

An example of a fragment of a concurrency view is illustrated on this slide.

A UML class diagram is used to show how the system’s functional elements are packaged into
processes, so that they can be executed. Stereotypes are used to indicate processes, threads and
process groups (no threads are shown here). Interconnections between processes are shown, with
tagged values being used to indicate the particular inter-process communication mechanisms to be
used. Coordination mechanisms are shown as stereotypes classes, with associations being used to
indicate use of the mechanism by particular processes.

33

33

Development Viewpoint

module organization
codeline organization
common processing
standardization of design
standardization of testing
instrumentation

Concerns

architectural design that supports and constraints the
software development process

Content

architectural constraints on the software development
process

Focus

First half of the development viewpoint summary.

34

34

Development Viewpoint (ii)

too much detail
overburdening the architectural description
uneven focus
lack of developer focus
lack of precision
problems with the specified environment

Pitfalls

module structure models
common design models
codeline models

Models

Second half of the development viewpoint summary.

35

35

Development View Fragment
Domain

StatDate Library
Java Numerical

Toolkit

Utility

Apache Axis Hibernate 2.1

Servlet 2.2 API

Platform

Java 1.4 Library
Oracle JDBC

Driver 9.0

Packages describing
layering constraints

Components
showing modules
in a layer

Dependencies capturing
allowable dependencies
between modules in layers

Dependencies capturing
allowable relaxation of the
layering

This slide shows a fragment of a development view, in this case a layer model for the software to be
developed. The layer model groups code modules into packages, which represent logical layers of
abstraction. The dependencies used show which layers depend on which other layers. Note the
“relaxed” layering, where “Utility” and “Domain” modules are allowed to access the “Java 1.4 Library”
directly, without going through the layering. (In reality, this may be such an obvious dependency that
you might eliminate it from the model, but it serves as a useful example here.)

36

36

Deployment Viewpoint

types of hardware required
specification and quantity of hardware required
third-party software requirements
technology compatibility
network requirements
network capacity required
physical constraints

Concerns

design of the environment into which the system will
be deployed, including the system’s runtime
dependencies

Content

runtime environment structure and the distribution of
software across it

Focus

First half of the deployment viewpoint summary.

37

37

Deployment Viewpoint (ii)

unclear or inaccurate dependencies
unproven technology
lack of specialist technical knowledge
late consideration of the deployment environment

Pitfalls

runtime platform models
network models
technology dependency models

Models

Second half of the deployment viewpoint summary.

38

38

Deployment View Fragment

{model=StorEdge3510FC,
capacity=500GB}

Disk Array

{model=SunFIreV440,
memory=16GB, CPU=2x1.6GHz,
IO=FiberChannel}

Database Server

{memory>=500MB,
CPU>=1.8GHz}

Client PC

<<process>>
Stats_Client

{model=DellSC430,
memory=8GB, CPU=2x3GHz}

Primary Server

<<process>>
Stats_Server

<<process>>
Calculator

<<processgroup>>
DBMS_Process_Grp

<<process>>
Loader

{type=FC}

Data Centre Resident

UML nodes
showing
hardware devices

Processes/
functional
elements mapped
to hardware

Packages show
logical hardware
groups

Relationships
show required
inter-node links

Tagged values
record hardware
requirements

This slide shows a fragment of a deployment view. The view is a UML deployment diagram, using a
package to show which nodes (machines) are located in the data centre and which are outside. The
nodes each have a tagged value specification of the minimum specification required and the
processes from the concurrency view are mapped to the nodes to show where each runs. In cases
where the functional element to process mapping is trivial or obvious, the functional elements can be
mapped directly to the nodes.

The nodes are also connected via associations that indicate the kind of physical interconnection
required, again with tagged values used to indicate specific or non-standard requirements (such as
the Database Server to Disk Array link being fibre channel in the example here).

39

39

Deployment View Fragment (ii)

Solaris 9.0 w/Aug05 patch cluster
Oracle 9.2.0.2 Std Edition

10GB buffer cache, auto sized SGA
auto storage management, 2 table spaces

OEM 9.2.0.2 installed and working

Database Server

Windows 2003 server, w/sec patches
Java SDK 1.4.2_06 or later
Apache Tomcat 5.5.9 or later

Primary Server

Windows XP SP1
Java JRE 1.4.2_06 or later
Internet Explorer 6.0 SP1

Client PC

Another deployment view fragment is shown in this slide, namely a software dependencies table,
showing the supporting software required on each node (or node type) in the system. Note the
detailed dependencies used, to avoid the “you need Oracle and Java” type of specification that often
causes problems later.

40

40

Operational Viewpoint

installation and upgrade
functional and data migration
operational monitoring and control
operational configuration management
performance monitoring
support responsibilities and procedures
backup and restore

Concerns

defines strategies for how the system will be
operated, administered, and supported when it is
running in its production environment

Content

system installation, migration, operation & supportFocus

First half of the operational viewpoint summary.

41

41

Operational Viewpoint (ii)

lack of engagement with the operational staff
lack of backout planning
lack of migration planning
insufficient migration window
missing management tools
lack of integration into the production environment
inadequate backup and recovery modelling

Pitfalls

installation models
migration models
configuration management models
administration models
support and escalation models

Models

Second half of the operational viewpoint summary.

42

42

Operational View Content
Installation Model

Installation groups
Dependencies and constraints
Backout strategy

Operational CM Model
Configuration groups and dependencies
Configuration parameter sets
Operational control (switching between sets)

The operational view content tends to be represented as “text and tables” and even for a simple
example system tends to be quite bulky. As this sort of information is difficult to present via slides,
we have just listed the sort of information you might expect to find in the operational view for a
system such as the one being described here.

Installation Model
•What needs to be installed? How are things grouped for easy installation?
•What dependencies and constraints exist between installation groups?
•How will you “undo” the installation and back out if it proves to be difficult?

Operational Configuration Management Model
•What sets of configuration settings need to be controlled? Are there dependencies between them?
(e.g. changing database configuration needs operating system changes at the same time)
•What are the different sets of configuration settings that need to be applied? (e.g. overnight, online
day, end of month, …)
•How will you actually perform the process of applying the different sets?

43

43

Operational View Content (ii)
Administration Model

Monitoring and control facilities required and
provided
Required routine operational procedures
Required operational action in case of error
conditions

Further possible operational view content:

Administration Model
• What facilities are required in the environment to monitor and control the various parts of the
system? (e.g. system management frameworks)
• What facilities will your system be providing for monitoring and control? (e.g. plugins to frameworks,
scripts and so on)
• What routine operational procedures will you need performed for your system?
• What action do you expect the operational staff to be able to perform if things go wrong? How will
they recognise these conditions?

44

44

Viewpoints and Views Recap
Viewpoints

A store of knowledge and experience
A guide to the architect
Templates to guide the process

Views
A structure for description
A separation of concerns
Aid to stakeholder communication

So, to recap …

•Viewpoints are the store of knowledge, that define the content of views of a particular type and guide
the architect to create them.
•Views are the specific partial system descriptions, each describing one aspect of the system, the
collection of which forms the architectural description.

45

45

Limitations of Viewpoints
Quality properties are critical

existing viewpoint sets don’t explicitly
consider quality properties

Quality properties usually need cross-view
consideration

viewpoints are relatively independent
Viewpoint focus may lead to late
consideration of quality properties

qualities are often expensive to add later

We’ve found viewpoints and views to be a very effective approach for architectural description and
guiding the architectural process. However, when applying existing sets, we’ve found one major
limitation: they don’t address quality properties effectively.

As the authors of IEEE 1471 point out, there is nothing to stop you developing a viewpoint for a
quality property (e.g. security) and then creating a view of your system based upon it. However, in
practice, we didn’t find that this worked well. We found we could define the viewpoint reasonably
easily, but when we came to create the view, it inevitably overlapped with lots of the other views. To
take security as an example, a “security view” is probably going to need to include information
duplicated from the deployment view, development view, possibly the functional view, possibly the
information view and so on, in order to explain effectively how the system to be made secure.
There is also the practical point that all of the existing viewpoint sets contain viewpoints for particular
architectural structures. None of them contain viewpoints for quality properties. This means that
when using these sets, there is a very natural tendency to focus on structures first and think about
their properties later, which as we know can cause problems.

46

46

Dealing with Quality Properties
A new concept could help

Allowing cross-view focus
Being quality rather than structure oriented
Providing similar organisation and guidance
to a viewpoint but for a quality property
That can be used in tandem with viewpoints

We call this new concept a “perspective”
or “architectural perspective” in full

We found it difficult to use viewpoints and views for quality properties, so we considered
adding a new concept to our architectural approach. We realised that we needed some way
of achieving a cross-view focus, that is so common when considering quality properties, and
we needed to guide architects to consider quality properties much more explicitly. We wanted
many of the features of a viewpoint and for our new concept to be naturally usable with
viewpoints (as we still found them to be very effective for architectural structures).
We called our new concept an “architectural perspective” (normally shortened to
“perspective”).

47

47

Architectural Perspectives

An architectural perspective is a collection of
activities, checklists, tactics and guidelines to
guide the process of ensuring that a system
exhibits a particular set of closely related
quality properties that require consideration
across a number of the system’s architectural
views.

Rozanski and Woods, 2005

The definition of a perspective is deliberately fashioned after the IEEE 1471 definition of a
viewpoint, to help people relate the two.
The perspective is a collection of architectural guidance, in terms of activities to be performed,
checklists to check, tactics to consider applying and sets of pitfalls to be aware of when
attempting to create a system that exhibits a particular quality property (or a very small closely
related set, if this makes sense).
Perspectives are described in our recent book, “Software Systems Architecture: Working With
Stakeholders Using Viewpoints & Perspectives”, Nick Rozanski & Eoin Woods, Addison
Wesley, 2005.

48

48

Architectural Perspectives
A guide for dealing with quality properties

Guide the architect in achieving the required
quality properties
Suggest changes to the existing views
Avoid possible redundancy between quality
and structural views

A new concept to use with viewpoints
Related to and extends SEI tactics work
Adds more context and advice to tactics

A set of perspectives provides an architect with a guide for dealing with quality properties in
their system. Each perspective guides the architect through the process of ensuring that their
system will exhibit the quality property that the perspective in question addresses.
The perspectives suggest a process for the architect to follow and catalogue architectural
tactics that can be applied to the system in order to achieve the quality. Applying these tactics
is likely to involve changes to a number of the views describing the system. The advantage of
this approach, as opposed to creating a new view per quality property, is that it avoids the high
degree of redundancy between views that a view-per-quality-property approach would
inevitably result in.
While they are a new concept, perspectives are related to SEI’s tactics work as each
perspective lists a number of tactics that can be applied in order to achieve the property in
question. However, perspectives are much richer than tactics, as they provide much more
context and guidance than a simple list of tactics can.

49

49

Adding Perspectives

Adding perspectives to our conceptual model results in the additional statements that:

• A perspective is applied to zero or more views (almost certainly one or more if the quality property
is important).

• A perspective can result in a supporting artefact (such as a performance model for example)

An important point to note is that the perspectives cause changes to be made to the existing views
that describe the system. They do not appear themselves in the architectural description, as the
perspectives are guides to the architect, analogous in many ways to viewpoints.

50

50

Architectural Perspectives
A simple but effective idea

A store of knowledge and experience
A guide to the architect
Templates to guide the process

Analogous to viewpoints but for quality
properties, rather than structures
Perspectives “applied” to views to assess
qualities and guide changes needed

To summarise …
Perspectives are a simple idea, but we’ve found them to work well in practice, providing a guide to
the architect by acting as a store of knowledge and experience and providing suggested activities to
guide aspects of the architectural process.
We say that a perspective is “applied” to the views in order to modify them so that the system exhibits
the quality property required.

51

51

Perspectives and Views

S
takeholders

Security Perspective

Performance Perspective

Availability Perspective

Maintenance Perspective

Accessibility Perspective

Location Perspective

Regulation Perspective

etc.

A
rchitecture

Development View

Deployment View

Operational View

Functional View

Information View

Information View

This figure provides an overview of how views and perspectives work together to produce an
architecture.
An architecture is designed, based on stakeholder inputs and needs and this results in a candidate
architecture. Then, the perspectives relevant to this system can be applied to the architecture (as
defined by the views), and the architecture modified as required in order to ensure that the system
will exhibit the quality property in question. During this process, the architect obviously has to
balance conflicting needs implied by different quality property requirements (e.g. security often being
in conflict with performance). The result of this process should be an architecture that meets the
needs of the system’s stakeholders.
Of course, this is a greatly simplified process. In reality, experienced architects consider quality
properties throughout the architecture process and perform a lot of these activities concurrently.
Never the less, we find the simplification useful when explaining how viewpoints and perspectives
can be used to create an architecture.

52

52

Architectural Perspectives
Our initial core set for information systems

Performance and Scalability
Security
Availability and Resilience
Evolution
Also: Location, I18N, Usability, Regulation,
…

Different sets in different domains

Like viewpoints, perspectives exist in sets, a particular set being aimed at a particular domain (such
as information systems, embedded systems, mobile systems and so on).

We have defined a set of perspectives, to work with out viewpoint set, aimed at large scale
information systems. Our core perspectives are:

• Performance and Scalability - will the system have the capacity and performance today, and be
able to scale to tomorrow’s demand?

• Security - can the resource owners in the system control access to the system and can the
system recognise and recover from security breaches?

• Availability and Resilience - will the system’s functions be available when people need to use
them? Can the system’s availability survive the failure of one or more elements?

• Evolution - can the system be changed over time as required?

We chose these four as our core set as they are relevant to nearly all information systems. Other
perspectives, that we have provided outline definitions for, that may be relevant to some systems
include Location, Internationalisation, Usability, Development Resource, Regulation and so on.

53

53

Performance and Scalability

optimize repeated processing
reduce contention via replication
prioritize processing
consolidate related workloads

[...]

Tactics

processing volume
response time
responsiveness
throughput
predictability

Concerns

ability of the system to predictably execute within its
mandated performance profile and to handle
increased processing volumes

Quality

First part of Performance and Scalability perspective summary.

54

54

Performance and Scalability (ii)

imprecise goals
unrealistic models
use of simple measures for complex cases
inappropriate partitioning
invalid environment and platform assumptions
too much indirection
concurrency-related contention, careless allocation

of resources,...

Pitfalls

distribute processing over time
minimize the use of shared resources
partition and parallelize
use asynchronous processing
make design compromises

Tactics
(cont.)

Second part of Performance and Scalability perspective summary.

55

55

P & S Perspective Activities

This slide shows the set of activities suggested for applying the performance and scalability
perspective to a system. It involves capturing and validating requirements, building performance
models to check likely performance, using the models for analysis, in parallel with validation via
practical testing and assessing the results against the requirements, changing the architecture if
required.

56

56

Security

threat identification
threat assessment

[...]

Tactics

policies
threats
mechanisms
accountability
availability
detection and recovery

Concerns

ability of the system to reliably control, monitor, and
audit who can perform actions on resources and to
detect and recover from security failures

Quality

First part of Security perspective summary.

57

57

Security (ii)

no clear requirements or models
complex security policies
unproven or ad-hoc security technologies
not designing for failure
lack of security administration facilities
technology-driven approach (or over-reliance)
failure to consider time sources
security as an afterthought
security embedded in the application code
piecemeal security

Pitfalls

vulnerability analysis
application of security technology

Tactics
(cont.)

Second part of Security perspective summary.

58

58

Security Perspective Activities

1. Identify
Sensitive

Resources

2. Define Security
Policy

3. Identify Threats
to the System

4. Design
Security

Implementation

5. Assess
Security Risks

[unacceptable]

[acceptable]

This slide shows the set of activities suggested for applying the security perspective to a system. It
involves working out what the sensitive resources in the system are and what security policy needs to
be enforced on them. Then, threats to the enforcement of the policy are identified and a security
implementation is designed to meet these threats, before assessing the risks remaining and
reconsidering the threats and design as required until an acceptable level of risk is reached.

59

59

Availability and Resilience

MTBF and MTTR prediction
availability schedules
availability models
availability technology application

Tactics

classes of service
planned / unplanned downtime
mean time between failures & mean time to repair
disaster recovery
redundancy, clustering, failover

Concerns

ability of the system to be fully or partly operational as
and when required and to effectively handle failures
that could affect system availability

Quality

First part of Availability and Resilience perspective summary.

60

60

Availability and Resilience (ii)
single point of failure
overambitious availability requirements
ineffective error detection
overlooked global availability requirements
incompatible technologies

Pitfalls

Second part of Availability and Resilience perspective summary.

61

61

A & R Perspective Activities

[finished] [not finished]

This slide shows the set of activities suggested for applying the availability and resilience perspective
to a system. The first activity is to capture and validate the requirements and then create a schedule
to show the required system availability profile. Then, estimating platform and application
(“functional”) availability allows the overall availability to be assessed against requirements and the
architecture to be reworked if required.

62

62

Evolution

design for change
architectural assessment

[...]

Tactics

flexibility
extensibility
functional evolution
deployment evolution
integration evolution

Concerns

ability of the system to be flexible in the face of the
change that all systems experience, balanced against
the costs of providing such flexibility

Quality

First part of Evolution perspective summary.

63

63

Evolution (ii)

prioritization of the wrong dimensions
changes that never happen
impact of evolution on critical quality properties
lost development environments
ad hoc release management

Pitfalls

configuration management
automated testing
build and release management

Tactics
(cont.)

Second part of Evolution perspective summary.

64

64

Evolution Perspective Activities
1. Characterise

Evolution Needs

2. Assess Current
Ease of Evolution

[finished]

[not finished]

4. Rework
Architecture

3. Consider
Evolution Tradeoffs

This slide shows the set of activities suggested for applying the evolution perspective to a system. It
involves understanding the evolution needs of the system, in order to characterise them by type,
timeline and likelihood of occurrence. The ease of evoluation can then be assess with respect to the
evolution needs and if unacceptable, considering architectural tactics that can increase the flexibility
of the system and reworking the architecture appropriately.

65

65

Other Perspectives

Can people use the system effectively?Usability

Does the system meet any required
regulatory constraints?

Regulation

Will the system work, given its required
geographical constraints?

Location

Is the system independent of language,
country and culture?

Internationalisation

Can the system be built within people,
time and budget constraints?

Devt. Resource

Can the system be used by people with
disabilities?

Accessibility

This slide summarises the other information systems perspectives that we have outlined in our book.
These perspectives are not relevant to all information systems, but many systems may need to
consider one or more of them.

66

66

Example Application
Simple example of viewpoints and
perspectives
Used throughout the tutorial materials
Statistics storage and processing system

Data loaded into the database
Derived measures calculated automatically
Statisticians view and report on the data
Deductions recorded and reviewed manually

67

67

Information View

StatsSet Variable

Observation

Deduction

DerivedMeasure

Fragment of the system’s information view reproduced here from earlier in the presentation.

ERD shows us:
• The system stores definitions of Variables it is monitoring.
• Observations exist for a variable, each observation is a value captured at a point in time.
• A Statistics Set collects a set of Observations that are related (presumably captured at the same

time).
• A Derived Measure is a derived statistic created by running a statistical calculation on the

Statistics Set.
• A Deduction can be made manually from one or more Statistics Sets and related to them.

The Entity Life History shows us:
• A deduction is initially created.
• Then, a deduction has to be published before being visible to other users.
• The deduction can then repeatedly be approved or challenged by other users. It can only be in

one state or the other (so challenging a deduction prevents it being approved).
• If the deduction is no longer relevant, it can be marked as obsolete (but note, it cannot be

destroyed).

68

68

Functional View

Fragment of the system’s functional view reproduced here from earlier in the presentation.

•GUI Clients access the system via the Statistics Accessor server element/component’s ClientActions
interface (which would need defined properly elsewhere). The interface they use is obviously some
sort of web services interface as it uses the SOAP protocol, according to the tagged value.
•Statistics are stored in the Statistics Store element, which offers two distinct interfaces, one to query
statistics and one to update statistics.
•The Statistics Calculator element is responsible for calculating the derived measures and so both
reads and writes statistics via the StatsQuery and StatsUpdate interfaces.
•The Bulk Loader element is marked as “external” and so is an element that interacts with our system
(and is probably something like Oracle’s SQL*Loader or Sybase’s BCP bulk loading utility programs).

69

69

Concurrency View

Fragment of the system’s concurrency view reproduced here from earlier in the presentation.

•The GUI Client element is packaged into a Stats_Client process, of which many run concurrently.
•The Stats_Client processes all interact with a single Stats_Server process, containing the Statistics
Accessor.
•The Statistics Calculator has been packaged into a Calculator process, which coordinates its access
to the Statistics Store with the Stats_Server process using the ExclAccessMutex.
•The Statistics Store is packaged as a group of processes, DBMS_Process_Group (presumably the
processes of a commercial DBMS).
•The Bulk Loader runs as its own process, Loader.
•The Stats_Client communicates with the Stats_Server using SOAP over HTTP, while the other
processes communicate using Oracle SQL*Net.

70

70

Development View
Domain

StatDate Library
Java Numerical

Toolkit

Utility

Apache Axis Hibernate 2.1

Servlet 2.2 API

Platform

Java 1.4 Library
Oracle JDBC

Driver 9.0

Fragment of the system’s development view reproduced here from earlier in the presentation.

•The code modules in the system have been separated into three layers of abstraction: Domain,
Utility and Platform.
•The Domain modules can access all of the Utility modules and the Java 1.4 Library module in the
Platform layer.
•The Utility modules can access all of the modules in the Platform layer.

71

71

Deployment View

{model=StorEdge3510FC,
capacity=500GB}

Disk Array

{model=SunFIreV440,
memory=16GB, CPU=2x1.6GHz,
IO=FiberChannel}

Database Server

{memory>=500MB,
CPU>=1.8GHz}

Client PC

<<process>>
Stats_Client

{model=DellSC430,
memory=8GB, CPU=2x3GHz}

Primary Server

<<process>>
Stats_Server

<<process>>
Calculator

<<processgroup>>
DBMS_Process_Grp

<<process>>
Loader

{type=FC}

Data Centre Resident

Fragment of the system’s deployment view reproduced here from earlier in the presentation.

•The Stats_Client processes all run on Client PC nodes, with at least 500MB of memory and 1.8GHz
processors (presumably WinTel PCs, although that’s not stated … see next slide).
•The Primary Server, Database Server and Disk Array nodes all run in a data centre.
•The Primary Server hosts the Stats_Server and Calculator, running on a specific model of Dell
server with the specified memory and CPU resources.
•The Database Server hosts the DBMS_Process_Group and the Loader process, running on a
specific Sun server model, again with specified memory, CPU and specialised IO interface
resources.
•The Disk Array is connected to the Database Server via a fibre channel interface (according to the
tagged values) and is a specific model with specific capacity (but no specified disk layout, at least
here).

We’re assuming certain standard network specifications between the machines, but if this was
complex or critical, we would create a network model to clearly communicate the connectivity we
require.

72

72

Deployment View (ii)

Solaris 9.0 w/Aug05 patch cluster
Oracle 9.2.0.2 Std Edition

10GB buffer cache, auto sized SGA
auto storage management, 2 table spaces

OEM 9.2.0.2 installed and working

Database Server

Windows 2003 server, w/sec patches
Java SDK 1.4.2_06 or later
Apache Tomcat 5.5.9 or later

Primary Server

Windows XP SP1
Java JRE 1.4.2_06 or later
Internet Explorer 6.0 SP1

Client PC

Fragment of the system’s deployment view reproduced here from earlier in the presentation.

•The Client PC nodes run Windows XP, SP1 and need particular versions of IE and the JRE.
•The Primary Server node runs Windows 2003 Server with unspecified security patches (presumably
the latest recommended at all times) and needs a specific JDK and Tomcat installed.
•The Database Server runs Solaris 9, with a specific set of patches applied. A specific version of
Oracle should be installed and a couple of critical configuration items are noted along with the need
to install the Oracle Enterprise Manager tool as well as the core DBMS.

73

73

Operational View

Omitted from slides for space reasons.
Would include:

Operational CM approach
Monitoring and Control
Operational Needs
Installation / migration / backout strategies

We omit the operational view here, as we did in the previous slides, because operational
views tend to be bulky “text and tables” views (usually captured in dedicated documents and
just summarised in the main AD). However, for this system we’d expect it to address any
required operational configuration management, how the system will be monitored and
controlled, any operational needs it has (routine or exceptional) and how it will be installed,
migration managed and/or backed out if it all goes horribly wrong.

74

74

Exercise: Applying a Perspective

Performance and Scalability
Capture P & S Requirements
Create Performance Models
Analyse Models
Perform Practical Testing
Assess Against Requirements
Rework Architecture (apply tactics)

What affect will this have on our system?

As an exercise, let’s consider what would happen to our views if we applied some
perspectives.

Consider the performance and scalability perspective first. Let’s assume that the system
needs to support a concurrent load of 10s of users and a potential load of 100s of concurrent
users. Is the current implementation suitable? How will you assess that? What will you do if
not?

75

75

Exercise: Applying a Perspective

1MBMemory per user
100Online load users
2500msBulk load 100K
10MbClient network
1400msSingle derived calc
50msDB access (rw)
20msDB access (ro)
100MbNetwork A
ValueMeasure

1MBMemory per user
100Online load users
2500msBulk load 100K
10MbClient network
1400msSingle derived calc
50msDB access (rw)
20msDB access (ro)
100MbNetwork A
ValueMeasure

Calibration
measures

Performance
model

76

76

Exercise: Applying a Perspective

1. Capture
Performance

Requirements

2. Create
Performance

Models

3A. Analyze
Performance

Model

4. Assess Against
Requirements

5. Rework
Architecture

[acceptable]

3B. Practical
Testing

77

77

Exercise: Applying a Perspective

Security
Identify Sensitive Resources
Define Security Policy
Identify Threats to the System
Design Security Implementation (apply
tactics)
Assess Security Risks

What affect will this have on our system?

Continuing the exercise, let us assume that this system is actually an intelligence analysis
system for a government agency.

Is the system “secure” enough? What resources are sensitive? (Names, addresses,
operational details?) What policy is needed? What threats does the system face?
(Operators taking backups away? Administrators accessing all data in the database? Internal
network attacks? Bribing investigating officers?) What countermeasures are possible?

78

78

Exercise: Applying a Perspective

1. Identify
Sensitive

Resources

2. Define Security
Policy

3. Identify Threats
to the System

4. Design
Security

Implementation

5. Assess
Security Risks

[unacceptable]

[acceptable]

79

79

Exercise: Applying a Perspective

Sensitive Resources
The data in the database

Security Threats
Operators stealing backups
Administrators querying data, seeing names
Bribing investigating officers
Internal attack on the database via network

80

80

Exercise: Applying a Perspective

Security Countermeasures
Backups: encrypt data in the database

How about performance?
Does this make availability (DR) harder?

Seeing names: use codes instead of names,
protect codes at higher security level

More development complexity
Possible performance impact

81

81

Exercise: Applying a Perspective

Security Countermeasures
Network Attacks: firewalls, IDS

More cost
More deployment / administration complexity
Operational impact if IDS trips

Bribery: add audit trail for data access
Possible performance impact
More complexity
Protecting / using the audit trail

82

82

Exercise: Applying a Perspective

Information View Impact

StatsSet Variable

Observation

Deduction

DerivedMeasure

Identifier CodeIsolate names

83

83

Exercise: Applying a Perspective

Development View Impact
Domain

StatDate Library
Java Numerical

Toolkit

Utility

Apache Axis Hibernate 2.1

Controlled
StatAccess

Library

Add audit when
accessing data

84

84

Exercise: Applying a Perspective

Deployment View Impact

Added network model
making network
security clear

85

85

Exercise: Applying a Perspective

Other Impact
Need IDS added to Development view
Need to capture impact on Operational view
Need to consider impact on availability
Need to re-work performance models to allow
for database encryption, audit, …

Note the need to change many views to
address security needs

86

86

Using Viewpoints & Perspectives

A framework for organising work
A store of knowledge

Document proven practice
Help standardise language and approach
Help to standardise languages and approaches

Applicable at different career stages
Mentor novice architects
Guide working architects
Support expert architects

Fundamentally, viewpoints and perspectives provide two benefits: they can act as a
framework to organise the architectural design process and they can act as a store of proven
architectural design knowledge.
We have also found that viewpoints and perspectives can be useful to architects of different
levels of experience, from novices to experts.

87

87

For Novice Architects
An introduction to each area of knowledge
A guide to what is important
A structure for the process
Definitions of standards and norms
Repository of proven practice and tactics
Pitfalls and solutions to avoid common errors
Checklist to ensure nothing is forgotten

Using Viewpoints & Perspectives

For a novice architect, a set of viewpoints and perspectives can provide them with a learning
framework that provides an overview of the core knowledge that they are likely to need in order to be
successful. They can guide the architect’s focus as they learn and provide reliable definitions of
standard terms and approaches. The proven practice and tactics in the set provides the architect
with a set of solutions to common situations that they will face, while the pitfalls (and solutions) and
the checklists allow them to learn from the experience of others.

88

88

Using Viewpoints & Perspectives

For Working Architects
A reminder of what is important
A guide to new or rarely used areas of
practice
Repository of proven practice and tactics
Pitfalls and solutions to avoid common errors
Checklist to ensure nothing is forgotten

The fairly experienced working architect will find that viewpoints and perspectives are a useful
reminder of what to focus on when considering a type of architectural structure of a particular quality
property. They can also help extend the architect’s knowledge in to new areas as their experience
grows and again, the set of proven practice and tactics provide a basic knowledge base to work from.
Perhaps most usefully, the pitfalls (and solutions) and checklists help the architect to avoid the
mistakes that other heads with more grey hairs have already made.

89

89

Using Viewpoints & Perspectives

For Expert Architects
A framework to allow knowledge sharing
An aid to tutoring and mentoring
Checklists to ensure nothing is forgotten

The experienced expert architect may well also find viewpoints and perspectives to be useful in their
work. Part of the expert’s role is to lead and mentor others, sharing best practice. A viewpoint and
perspective set helps them to do this by providing a knowledge sharing framework and a concrete set
of artefacts to use when mentoring less experienced architects. They may also find that the
checklists provided are useful for themselves, particularly to avoid problems with half-remembered
previous experiences!

90

90

Summary

Architecture Essential Difficulties
Multi-dimensional problem, no right answer
Stakeholder needs conflict
Complex mix of people and technology
Tradeoffs are inevitable

Architecture Accidental Difficulties
Lack of standardisation (approach, artefacts)
Little sharing of knowledge and experience

So to summarise what we’ve covered in this session …

Firstly, software architecture is an essentially complex business that is difficult to do well.
Software architecture is a complex, multi-dimensional problem covering a range of factors including
functional structure, information, security, concurrency, deployment, performance, maintainability and
more. It is the sort of problem, typical to engineering systems design, where you don’t really have a
“right” answer, but rather a series of possibly good enough ones to choose from. Part of this problem
stems from the fact that the system’s stakeholders all have different, usually conflicting, agendas.
Developing a system involves a large, complex mix of people and technology, any of which often has
the ability to cause your system to fail and you need to manage this mix.
Given this environment, making tradeoffs is an inevitable, but difficult and often unenviable part of the
role.

There are also some accidental difficulties that arise from our state of practice. In particular, we’ve
only recently started to standardise very much across the industry (even at the conceptual level, of
IEEE 1471, where it might help communication and understanding without being too constraining).
The result of this is that every architect ends up inventing their own architecture process and defining
their own set of useful architectural artefacts. A related problem is that we’re not very good at
sharing hard-won knowledge and experience. This means that we don’t tend to use standard
solutions to common problems but rather each architect tends to end up learning their own lessons,
often at the cost of our stakeholders.

91

91

Summary (ii)

Viewpoints and Views
Views provide a convenient approach for
effective architectural description
Viewpoints standardise views by defining
their content
Viewpoints contain proven architectural
knowledge for a particular domain
Viewpoints and views can address many
accidental difficulties of software architecture

Many of the accidental difficulties of software architecture can be at least partially addressed by using
an approach based on viewpoints and views.

Views provide us with the fundamental structuring mechanism to allow us to describe our
architectures as a coherent set of related, but distinct, descriptions, unified into an architectural
description. However, by themselves, views are little more than a simple documentation convention
and still leave much to the individual architect’s intuition and experience.

Viewpoints strengthen the approach by providing a set of standard templates, applicable to a
particular domain, that guide the development of each view. Viewpoints share architectural
knowledge by communicating effective models to use in views of particular types, explaining how to
go about building a view, highlighting potential problems in that area (and suggesting solutions) and
providing focus by defining the stakeholders interest in the view in question.

That said, to date, viewpoints have only been used to address the question of designing and
describing architectural structures, with system quality properties being handled by the architect’s
intuition and experience – the very problem we are trying to assist with. In theory, views (and
viewpoints) can be created for quality properties but, to the best of our knowledge, no one has
actually done this and as we explained earlier, we don’t think it’s a good thing to try.

92

92

Summary (iii)

Viewpoints for Information Systems
Functional
Information
Concurrency
Development
Deployment
Operational

A possible viewpoint set to guide the architectural design of large scale information systems can be
found in our book (see http://www.viewpoints-and-perspectives.info), which contains
the following viewpoints:
•Functional – the functional structure, elements, responsibilities, interfaces and interactions of the
system.
•Information – the information structure, ownership, flow, latency and access in the system.
•Concurrency – how the functional structure will be packaged as processes and threads to allow it to
be executed.
•Development – the architectural constraints that are important to impose on the software
development and integration process.
•Deployment – the system’s runtime environment in terms of nodes, links, process to node mappings
and hardware/software dependencies on each node.
•Operational – the set of strategies and requirements that will allow the system to be installed,
migrated to, operated, controlled and supported.

93

93

Summary (iv)

Perspectives
Viewpoints handle structure well, less
convinced about quality properties
Perspectives provide similar guidance and
knowledge sharing for quality properties
Perspectives suggest the design activities
required to achieve a property
Perspectives provide proven practice, pitfalls,
solutions and checklists to share experience
Applying perspectives modifies views

We did try to create views for quality properties (and viewpoints to define their structure) but we kept
running into the problem that addressing a quality property typically impacts a number of architectural
structures (improving security might affect the functional, deployment and development views for
example). What kept happening was that our “quality views” duplicated a lot of information in other
views, as well as resulting in changes to the views themselves. For anything other than a trivial
system, this duplication rapidly meant that the architectural description became very hard to change
and so just fell out of use.

Our solution to this problem was to introduce a new concept: the architectural perspective.
Perspectives have similar goals to viewpoints, around standardising approaches and sharing proven
knowledge, to avoid mistakes that have already been widely made.
A particular perspective suggests a simple set of activities that the architect should perform in order
to ensure that their system exhibits a particular quality property. These activities generally involve
understanding the requirements, analysing the system against those requirements (often by creating
an ancillary artefact in the shape of a model) and applying architectural tactics until the quality related
behaviour of the system is acceptable.
Perspectives provide proven practice in the shape of architectural tactics to apply, activities to
perform, pitfalls to be aware of, solutions to try if the pitfalls emerge and checklists to help the
architect to avoid overlooking important factors.

Perspectives are intended to be defined in sets, a set being applicable to a particular systems
domain, with each perspective in the set addressing a particular quality property (e.g. performance or
security). Applying a set of perspectives to a system will almost certainly result in the views
describing the system being modified in order to address the quality properties under consideration.
Note that the perspectives don’t appear in the architectural description – they are guides to modifying
the existing views in the AD.

94

94

Summary (v)

Perspectives for Information Systems
Availability and Resilience
Evolution
Performance and Scalability
Security
Others

Accessibility, Development Resource,
Geographical Location, I18N, Regulation, Usability

We have found four perspectives critical for most large information systems:
•Availability and Resilience – will the system be available when the stakeholders need it, even if
things go wrong?
•Evolution – will the system be amenable to change, when needed?
•Performance and Scalability – will the system be able to process its workload quickly enough and
can you increase its capacity at reasonable cost and effort?
•Security – can the owners of sensitive resources in the system control access to them reliably, tell
when security has been breached and recover from this?

We have produced complete definitions of these core perspectives in our book.

A large number of other perspectives could be used with information systems, of which we have
produced outline definitions of 6 in the book.
•Accessibility – can the system be used by everyone who needs to use it?
•Development Resource – can the system be created given the resource constraints you face?
•Geographical Location – can the system operate from the geographical locations that it will need to
be installed in?
•Internationalisation – is the system independent of currencies, formats, languages and other locale
specific aspects and can these facets of the system be changed easily for localisation?
•Regulation – will the system meet the regulatory constraints that it is expected to operate under?
•Usability – can the users of the system use the system effectively for their tasks?

95

95

Summary (iv)

Using Viewpoints and Perspectives
Novices

Overview, guides, focuses attention
Proven practice, pitfalls, solutions and checklists

Working Architects
Reminder of existing knowledge
Aid in new areas

Experts
Mentoring and communication vehicle
Reminders of hard won lessons

We have found that viewpoints and perspectives can be used by architects of vastly differing
experience and knowledge.

•Novices use them primarily as educational and learning aids, guiding their development and helping
them to avoid mistakes.
•Working architects use them to reinforce existing knowledge and expand their competence to new
areas, as well as being useful aide memoirs when working.
•Experts find that they can use viewpoints and perspectives to capture their hard won knowledge, to
allow it to be used for mentoring and teaching less experienced architects, as well as being useful
aide memoirs to themselves when working.

96

96

To Learn More

Software Systems Architecture:
Working With Stakeholders Using
Viewpoints and Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info

97

Nick Rozanski
nick@artechra.com
www.nick.rozanski.com

Eoin Woods
eoin@artechra.com
www.eoinwoods.info

Comments and Questions?

98

98

Saved Slides from Here

99

99

table from info view

--C,U,DBulk Loader

C,U,D--Statistics
Calculator

RC,R,U,DRStatistics
Accessor

Derived
MeasureDeductionObservation

100

100

table for P&S

1MBMemory per user

100Online load users

2500msBulk load 100K

10MbClient network

1400msSingle derived calc

50msDB access (rw)

20msDB access (ro)

100MbNetwork A
ValueMeasure

