
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Eoin Woods
Endava
eoin.woods@endava.com

Architecting in the Gaps
A Metaphor for Architecture Work

Eoin Woods

THE PRAGMATIC
ARCHITECT

EVER SINCE Dewayne Perry and
Alexander Wolf suggested that soft-
ware architecture comprises ele-
ments, form, and rationale,1 people
have been asking, “What is architec-
ture, and what is design?” I’ve been
asked this countless times and often
find it difficult to respond with a
clear answer.

When I recognize good architec-
ture work, it normally exhibits these
characteristics:

• Design-centric. It’s often said
that “all architecture is design,
but not all design is architec-
ture.”2 Architecture is funda-
mentally about making design
decisions.

• Balancing concerns. Archi-
tecture work usually involves
satisfying the needs of a varied
community of stakeholders, so

architects must balance many
competing concerns.

• System-wide focus. Many of the
concerns architects address are
system qualities (nonfunctional
requirements), and so need to be
considered across the system as a
whole rather than at the individ-
ual component level.

• Leadership. The architect’s work
involves making decisions, so
they must possess strong leader-
ship skills.

However, even when I was able
to use these characteristics to iden-
tify architecture work, I still had
difficulty clearly explaining the ar-
chitect’s job and how it fits into the
overall project. I realized I needed
a different way to explain it—I
needed a good metaphor for archi-
tecture work.

Architecting in the Gaps
As I thought about this, a meta-
phor for software architecture oc-
curred to me: “architecting in the
gaps.” Architecture organizes,
links, unifies, and constrains a sys-
tem’s detailed design work and so
is inherently about the system ele-
ments’ boundaries rather than their
inner workings. A lot of architec-
ture work is concerned with the
system’s quality properties, which
usually requires a focus on ele-
ment boundaries and the interfaces
and interactions that connect ele-
ments—bridging the gaps between
those elements.

So, what sort of boundaries are
we concerned with? I can think of at
least four types.
• Architecture can be realized as

a set of technical boundaries,
where the architecture is em-
bodied in a run-time structure.
For example, consider a sys-
tem built on top of middleware
products, where the system’s
architecture is defined largely by
the middleware’s configuration
and deployment.

• Architecture can reflect orga-
nizational boundaries, such
as when a domain architect is
responsible for the systems in a

Architects are often the only people
responsible for bridging the gaps
between a system’s elements.

THE PRAGMATIC ARCHITECT

 JULY/AUGUST 2015 | IEEE SOFTWARE 5

business area and negotiates the
interfaces between that domain
and others.

• Architecture can define con-
ceptual boundaries, such as
those in a domain’s refer-
ence architecture, which helps
people understand the domain’s
essential scope, structure, and
relationships.

• Architecture is often found at
software design boundaries,
describing the components and
connectors that make up a sys-
tem’s fundamental structure.

Using the Metaphor
How can we use this metaphor in
our day-to-day lives as software ar-
chitects? Here are some common
situations in which I’ve found it
can help.

Justifying Architecture Work
Although the term “software archi-
tecture” is widely used, the ques-
tion of its value still often arises.
This is particularly true in the con-
text of agile delivery, which often
focuses on providing functions to
product owners.

The metaphor can help high-

light the contribution of architec-
ture work and why it matters. Ar-
chitects are often the only people
responsible for bridging the gaps
between a system’s elements. Even
when software developers are or-
ganized into feature teams and
work across components, they’ll
still be concerned with the inter-
nal details of each part of the sys-
tem and naturally focus on what’s
needed to support the features
they are working on. In contrast,
architecture work helps maintain
the integrity of the overall system,
which requires a very different fo-
cus from that required of a feature
developer.

How Much Is Enough?
Knowing when enough architecture
work has been completed is also dif-
ficult. How much architecture work
do we need to do? When does it hap-
pen? How do we know when we’re
done? The metaphor can help here
because if we’ve considered all the
“gaps” in a system and resolved the
problems we’ve found, we’ve proba-
bly mitigated the architectural risks,
in which case we’ve done enough ar-
chitecture work.

Maintaining Focus
There are always many areas in
which software architecture tech-
niques might be useful, but there is
rarely time to address them all. This
makes it difficult for architects to
know where to focus their efforts.
The metaphor can help architects
concentrate on the most important
aspects of their work. There’s always
a temptation to get involved in ev-
erything. However, if architects fo-
cus on the system’s structure rather
than on the details of each element’s
implementation, they’ll be able to ef-
fectively influence the system’s qual-
ity properties—a key responsibility
of architects.

Figure 1 shows an example of
this. The red circles indicate typical
areas that would be worth search-
ing for architectural concerns—
they tend to be around the inter-
faces and interactions of a system’s
elements.

Collaborating Effectively
Finally, it can be hard to know how
to work effectively with other people.
In some cases, a number of people in
development teams do all the archi-
tecture work; in others, a software

<<SpringService>>
Transaction services

<<SpringService>>
UI services

<<JavaExe>>
Reporting services

<<Oracle11DB>>
Reporting DB

<<AngularAPP>>
WebUI

<<SpringService>>
Reporting services

<<MarkLogicDB>>
Reporting DB

FIGURE 1. System boundaries. The red circles indicate typical areas that would be worth searching for architectural concerns—they

tend to be around the interfaces and interactions of a system’s elements.

THE PRAGMATIC ARCHITECT

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

architect works alongside (rather
than in) the development teams. In
either case, how does the architec-
ture work get integrated with other
work on the project? How does an
individual architect work with other
people on the project?

Here, the metaphor can be a
guide to effective collaboration.
When architects work with develop-
ment teams, a lack of clarity as to
where responsibilities start and stop
can lead to confusion or even con-
flict. It can help if team members vi-
sualize the architect’s focus as being
on the gaps between the system’s el-
ements rather than on their internal
implementations. An architect gen-
erally defers to team leaders when
a disagreement or question relates
to a system element’s internal work-
ings. The team leaders generally de-
fer to an architect when a question
is about element boundaries and
interactions. Figure 2 suggests how
architecture fits into a project’s or-
ganizational structure to allow for
effective collaboration.

Taking it Too Far
Like any metaphor, mine can be
taken too far to where it becomes
misleading and unhelpful. Although
most software architecture work is
found at the boundaries of elements,
architects can’t always stop there.
They might need to delve into details
in the system to understand an ele-
ment and its impact on the system as
a whole.

Another danger of overusing the
metaphor is the possibility of ending
up without ownership of anything
tangible. If architects focus on only
the gaps, they might end up doing
a lot of valuable coordination work
but with the appearance of not hav-
ing contributed anything specific. To
avoid this, architects must be clear
about which practical aspects of the
project they own, such as the design
of particular system qualities.

Although I’ve found “architect-
ing in the gaps” to be very useful
for visualizing software architec-
ture work, it should be used like any
metaphor—sparingly!

A metaphor can be a pow-
erful aid to learning and
communication, and I’ve

found that the idea of “architect-
ing in the gaps” helps people visual-
ize where architecture work fits in
the software development process.
So the next time you’re struggling
to find an architectural focus or the
next time someone asks you why
they need an architect, just remem-
ber: the answer is in the gaps.

References
 1. D.E. Perry and A.L. Wolf, “Foundations

for the Study of Software Architecture,”
ACM SIGSOFT Software Eng. Notes, vol.
17, no. 4, 1992, pp. 40–52.

 2. G. Booch, “Software Architecture, Soft-
ware Engineering, and Renaissance Jazz,”
blog, 2 Mar. 2006; www.ibm.com
/developerworks/community/blogs
/gradybooch/entry/on_design.

EOIN WOODS is the chief technology officer at
Endava, a European IT services company. Contact
him at eoin.woods@endava.com.

Red team

Yellow team

Blue team

Manager(s)

Ar
ch

ite
ct

ur
e

FIGURE 2. Boundaries guiding an architect’s collaboration with other project team

members. The architect concentrates on system-wide concerns and interactions

between the teams, rather than the work inside the teams.

VISIT US ONLINE

computer.org
/software

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

